
Problem Sheet #9

Symplectic geometry. 2024 Winter Term. Heidelberg University
Course taught by J.-Pr. Agust́ın Moreno∗

December 17, 2024

Please solve the following problems. Show all your work and justify your answers. The
dagger † denotes optional exercises. You are encouraged to work in pairs!

Deadline: January 10, 2024.

Problems

Exercise 1. Let S ⊆ (M,ω) be a compact hypersurface and assume that S bounds a
symplectic manifold B, i.e. ∂B = S. Let Sϵ be a parametrized family of hypersurfaces
modeled on S and denote by Bϵ the symplectic manifold bounded by Sϵ. We assume the
parametrization is such that ϵ ≤ ϵ′ =⇒ Bϵ ⊆ Bϵ′ . Recall that if C(ϵ) = c0(Bϵ, ω), the
surface Sϵ∗ is called of c0-Lispchitz type if there exist µ, L > 0 such that

C(ϵ) ≤ C(ϵ∗) + L(ϵ− ϵ∗)

for all ϵ∗ ≤ ϵ ≤ ϵ∗ + µ.

1. Show that the c0-Lipschitz condition does not depend on the choice of parametrized
family on Sϵ∗ but only on Sϵ∗.

2. Let S be the hypersurface described at the beginning of the exercise and assume
that there exists a vector field X defined in neighborhood of S that is transverse
to S and satisfies LXω = ω (X is called a Liouville vector field). Show that S is of
c0-Lipschitz type.

Exercise 2. (Introduction to Liouville domains)

1. Let M be a closed even-dimensional manifold. Show that it admits no exact sym-
plectic structure.

Let (W,ω = dλ) be a compact, exact symplectic manifold with boundary. We call it
a Liouville domain if the boundary ∂W is of restricted contact-type, i.e if λ|∂W is a
contact form.

2. Restate the ’restricted contact-type’ condition in terms of the Liouville vector field.

∗For comments, questions, or potential corrections on the exercise sheets, please email
alimoge@mathi.uni-heidelberg.de, or ruscelli.francesco1@gmail.com
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3. Show that the closed disc D2n ⊂ (R2n, ω0 = dλ0) is a Liouville domain, with

λ0 =
1

2

∑
i

qidpi − pidqi

Let Q be a manifold which we assume, for simplicity, to be embedded into some RN , with
ambient inner product ⟨·, ·⟩. Then, the cotangent bundle of Q is defined as:

T ⋆Q =
{
(q, p) ∈ T ⋆RN | q ∈ Q, ⟨q, p⟩ = 0

}
(1)

and we further make the two definitions:

D⋆Q =
{
(q, p) ∈ T ⋆RN | q ∈ Q, ⟨q, p⟩ = 0, ∥p∥ ≤ 1

}
(2)

S⋆Q =
{
(q, p) ∈ T ⋆RN | q ∈ Q, ⟨q, p⟩ = 0, ∥p∥ = 1

}
(3)

which are submanifolds of T ⋆Q, respectively called the disc cotangent bundle and unit
cotangent bundle.

3. Prove that ∂(D⋆Q) = S⋆Q, as manifolds.

4. Show that, when endowed with the natural symplectic structure inherited from
T ⋆Q, D⋆Q is a Liouville domain.

Exercise 3. In practice, if one wants to do dynamics on a Liouville domain, the
boundary often poses problems, as our usual tools from symplectic geometry are not all
meant to deal with such cases (we often work on closed manifolds, i.e compact without
boundary). As it happens, it is easier to get away with lifting the compactness assump-
tion, than with having a boundary. Therefore, we will employ a scheme called Liouville
extension, which will turn our Liouville domain into a non-compact manifold without
boundary. Our notation is as in the previous exercise.
Recall from lectures that since the Liouville vector field V is transverse to the boundary,

we have (ϕt
V )

⋆λ = etλ for t ∈ (−ϵ, 0]. Write r = et.

1. Define Ŵ := W ∪∂W [1,+∞) × ∂W . We call this the Liouville extension of W .
Draw a picture of this extension process in the cases W = D2n, W = D⋆S1 (Note:
for the latter, assume S1 is embedded in R2 or R3 as a circle of radius > 1), and for
the following manifold:

We often call this extension Ŵ a Liouville manifold. It can be endowed with an exact
symplectic structure given by ω̂ = d(rλ) (which is a smooth extension of ω = dλ).
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Now, the easiest type of Hamiltonians to work with on a Liouville manifold are those
which are linear at infinity, i.e:

H : Ŵ → R is such that ∃r0 ≥ 1 s.t H = H(r) = ar + b on [r0,+∞)× ∂W (4)

for some constants a > 0, b ∈ R.

We define an almost complex structure J on Ŵ as follows: First, choose an almost
complex structure Jξ on ξ := kerλ|∂W (the natural contact structure on ∂W ). And
extend it to [1,+∞)× ∂W by setting:

J∂r = R

where R is the Reeb vector field on (∂W, λ|∂W ). (A priori, it is only defined on ∂W , but
we can translate it to every slice {r} × ∂W , for r > 1). We then smoothly extend this J
to the interior of W in an arbitrary way.

2. Let H : Ŵ → R satisfy (4). Compute XH at infinity.

3. Deduce that, for r ≥ r0, periodic orbits are constrained to slices {r} × ∂W which
are ”parallel to the boundary”.

Let α := λ∂W denote the restricted contact form on ∂W , and define

specα := {T > 0 | T is the period of a Reeb orbit}

And we make the assumption that the slope a from (4) satisfies a /∈ specα.

4. Show that the period 1 periodic orbits of H are all contained in a compact region.

Exercise† 4. (Morse Lemma) Let f : M → R be a Morse function and p ∈ M a
critical point. Prove that there exists a chart φ : U → Rn around p such that

fφ−1(x1, . . . , xn) = f(p)− (x2
1 + · · ·+ x2

k) + (x2
k+1 + . . . x2

n)

for some 0 ≤ k ≤ n.
Hint: use Moser’s trick.

Exercise† 5. (Some Morse homology) Consider a torus T2 embedded in R3, which
is slightly tilted (it’s standing almost vertically, but not quite). Write f : T2 → R the
restriction of the height function (x, y, z) 7→ z to the torus.

1. Draw the critical points of f , along with their Morse indices (you don’t need to
compute them explicitly, but justify your answer).

2. Verify explicitly that, in this case, HM∗(T2, f ;Z2) ∼= H∗(T2;Z2), where HM∗ de-
notes Morse homology, and H∗ singular homology.
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