Problem Sheet #8

Symplectic geometry. 2024 Winter Term. Heidelberg University
Course taught by J.-Pr. Agustin Moreno*

December 6, 2024

Please solve the following problems. Show all your work and justify your answers. The
dagger 1 denotes optional exercises. You are encouraged to work in pairs!

Deadline: Friday Dec. 18 2024. (Note: this is the last due submission for the year 2024.
A final, Christmas problem sheet will be uploaded after the Dec. 13 class, due in January).

Problems

Exercise 1.
1. Let g be a scalar product on R?*" and consider the ellipsoid
E(g) ={veR™| g(v,v) <1},
Show that there exists A € Sp(2n) and r = (ry,...,r,) with 0 <7 <--- <7, such
that A(E(g)) = E(r), where
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B(r) = {(e.) € R | 3

Hint: you can use the fact that, if (V,w) is a symplectic vector space and (,) is a scalar
product, there exists a symplectic basis {e;, f;} that is orthogonal with respect to (,).
Furthermore, this basis can also be chosen to satisfy (e;, e;) = (f;, fi) for all i.
2. Show that the numbers ry, ..., r, are uniquely determined by E(g).
Hint: suppose that E(r) and E(s) are related by an element A € Sp(2n). Show that the
matrices Jodiag(%g, ..., and Jodiag(s%, ..., =) are similar.
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Exercise 2. (Isoperimetric inequality) Let (V,w) be a symplectic vector space and
let J € J(V,w) be an w-compatible linear complex structure. Denote by ||v||* = w(v, Jv)
for v € V. Consider a smooth loop 7: R/Z — V and define
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*For comments, questions, or potential corrections on the exercise sheets, please email
alimoge@mathi.uni-heidelberg.de, or ruscelli.francescol@gmail.com
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which are the (linear) symplectic action, the energy and the length of v respectively.
Prove that

1 1
[ Al < —L(7)* < —E(v).
4dm 2m
If 7 is nonconstant, prove that |A(v)| = 5= E(v) if and only if the image of y is a circle.

Hint: identify (V,w,J) = (C",wo, Jo) and write v as a Fourier series (t) = Y, o, ape*™/okt

with a; € C" for all k € Z. Prove that

Ay) = =7y klax]l?,
kez

E(y) =2 kK s
kez

and deduce that |A(7y)| < 5= F(y). Approximate vy by immersed loops and reparametrize by arc
length.

Exercise 3. (Principle of Least Action) Let (M,w = d\) be a compact, exact
symplectic manifold, with an almost complex structure .J, and consider & := C*(S!, M),
the space of smooth loops in M. Let H be a (possibly time-dependent) Hamiltonian on
M. Then, inspired by classical physics, we define the action functional:

Ay : P —-R:x+— — [ A+ | Hox (1)
st st
The goal of this exercise is to compute the derivative of Ay. The subsequent analysis will
take place in C*°(S', M), which is technically a(n infinite-dimensional) Banach manifold;
but for the purposes of this exercise, you may assume objects behave like on finite-
dimensional manifolds.

1. Let x5 be a path in &, and ¢ := (d/ds)zs|s—o. (¢ is a tangent vector to a loop x in

M. Therefore, it is a vector field ¢ = ((t) € T, M. Formally, one can view it as a
section of the bundle 2*T'M — [0,1]). Show that:

d By /S1 :132/\+/Sl dH (¢(t))dt

ds
d . I
2. Show that s s\ = "L\, where £ denotes the Lie derivative.
§ s=0

dAp(x)¢ =

3. Using the sign convention ix,w = —dH, show that:

dAu(2)¢ = | dA(@(t) — X (x(t)), C(2))dt (2)

Sl

4. State and prove a "Principle of Least Action” for periodic orbits.
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Remark. If you are familiar with Morse theory, then the previous exercise may have given
you ideas. Morse theory is a homological construction meant to detect critical points of
functions f : M — R on (finite-dimensional) manifolds. It does so by connecting these
critical points by trajectories of the flow of —V f (one can prove that such trajectories
have to end in critical points f); and then using these trajectories to define a ” differential”
(an algebraic map between formal sums of critical points), and then a homology theory.

In our case, if we could do the same with A : C*(S!, M) — R, we could get a homology
theory which records periodic orbits of our Hamiltonian flow (from a physics point of
view: trajectories of our physical system). The obstruction, however, is that C*(S!, M)
is infinite-dimensional, making the constructions much more technical. Re-proving the
statements from Morse theory on such infinite-dimensional manifolds is the essence of
Floer theory; which has become a major subject in symplectic topology.

The next (bonus) exercise is a first step in this direction, which follows from Exercise
3. It aims to explain which objects we will use to connect critical points of Ajy.

Exercise' 4.
We are in the same set-up as exercise 1, with & := C>®(S!, M), and Ay defined as in
. You may use without proof the fact that:

GG e T (6= [ ol aO)d = [ v aeme @
defines an L2:-metric on &2, and that the gradient V w.r.t to it is defined as usual.

1. Let u = u(s,t) denote a cylinder R x S'. Show that the equation:

ou
can be re-written:
ou ou
huind e H = 4
95 + J@t +V 0 (4)

This is called the Floer equation. Given a solution u, we define its energy:
u

0
E(u ::/
( ) Rx[0,1] 0

2. Show that F(u) =0 <= wu = z where x is such that dAy(z) = 0 (in other words,
E(u) = 0 iff u is constantly equal to a periodic orbit of the Hamiltonian flow).

2
ds A dt (5)

S

3. Show that E(u) can be re-written:

ou Ou
E(u) = w|l =—,— — Xy |ds A dt
(u) /Rx[o,l] (83 ot H)

4. Prove the following proposition:

Proposition 0.1. Let u : R x St — M be a smooth cylinder which solves the Floer
equation , and such that:

lim wu(s,t) ==(t), lim u(s,t) =y(t)

s§——00 t—4o00

where x and y are periodic orbits of the flow of H. Then, we have:

E(u) = An(z) — An(y) (6)



