
Problem Sheet #8

Symplectic geometry. 2024 Winter Term. Heidelberg University
Course taught by J.-Pr. Agust́ın Moreno∗

December 6, 2024

Please solve the following problems. Show all your work and justify your answers. The
dagger † denotes optional exercises. You are encouraged to work in pairs!

Deadline: Friday Dec. 13 2024. (Note: this is the last due submission for the year 2024.
A final, Christmas problem sheet will be uploaded after the Dec. 13 class, due in January).

Problems

Exercise 1.

1. Let g be a scalar product on R2n and consider the ellipsoid

E(g) = {v ∈ R2n | g(v, v) < 1}.
Show that there exists A ∈ Sp(2n) and r = (r1, . . . , rn) with 0 < r1 ≤ · · · ≤ rn such
that A

(
E(g)

)
= E(r), where

E(r) = {(x, y) ∈ R2n |
n∑

i=1

x2
i + y2i
r2i

< 1}.

Hint: you can use the fact that, if (V, ω) is a symplectic vector space and ⟨, ⟩ is a scalar

product, there exists a symplectic basis {ei, fi} that is orthogonal with respect to ⟨, ⟩.
Furthermore, this basis can also be chosen to satisfy ⟨ei, ei⟩ = ⟨fi, fi⟩ for all i.

2. Show that the numbers r1, . . . , rn are uniquely determined by E(g).

Hint: suppose that E(r) and E(s) are related by an element A ∈ Sp(2n). Show that the
matrices J0diag(

1
r21
, . . . , 1

r2n
) and J0diag(

1
s21
, . . . , 1

s2n
) are similar.

Exercise 2. (Isoperimetric inequality) Let (V, ω) be a symplectic vector space and
let J ∈ J (V, ω) be an ω-compatible linear complex structure. Denote by ∥v∥2 = ω(v, Jv)
for v ∈ V . Consider a smooth loop γ : R/Z → V and define

A(γ) =
1

2

∫ 1

0

ω(γ̇(t), γ(t)) dt,

E(γ) =
1

2

∫ 1

0

∥γ̇(t)∥ dt,

L(γ) =

∫ 1

0

∥γ̇(t)∥ dt,

∗For comments, questions, or potential corrections on the exercise sheets, please email
alimoge@mathi.uni-heidelberg.de, or ruscelli.francesco1@gmail.com
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which are the (linear) symplectic action, the energy and the length of γ respectively.
Prove that

|A(γ)| ≤ 1

4π
L(γ)2 ≤ 1

2π
E(γ).

If γ is nonconstant, prove that |A(γ)| = 1
2π
E(γ) if and only if the image of γ is a circle.

Hint: identify (V, ω, J) = (Cn, ω0, J0) and write γ as a Fourier series γ(t) =
∑

k∈Z ake
2πJ0kt

with ak ∈ Cn for all k ∈ Z. Prove that

A(γ) = −π
∑
k∈Z

k ∥ak∥2 ,

E(γ) = 2π2
∑
k∈Z

k2 ∥ak∥2

and deduce that |A(γ)| ≤ 1
2πE(γ). Approximate γ by immersed loops and reparametrize by arc

length.

Exercise 3. (Principle of Least Action) Let (M,ω = dλ) be a compact, exact
symplectic manifold, with an almost complex structure J , and consider P := C∞(S1,M),
the space of smooth loops in M . Let H be a (possibly time-dependent) Hamiltonian on
M . Then, inspired by classical physics, we define the action functional:

AH : P → R : x 7−→ −
∫
S1
x⋆λ+

∫
S1
H ◦ x (1)

The goal of this exercise is to compute the derivative of AH . The subsequent analysis will
take place in C∞(S1,M), which is technically a(n infinite-dimensional) Banach manifold;
but for the purposes of this exercise, you may assume objects behave like on finite-
dimensional manifolds.

1. Let xs be a path in P, and ζ := (d/ds)xs|s=0. (ζ is a tangent vector to a loop x in
M . Therefore, it is a vector field ζ = ζ(t) ∈ Tx(t)M . Formally, one can view it as a
section of the bundle x⋆TM ↠ [0, 1]). Show that:

dAH(x)ζ = − d

ds

∣∣∣∣
s=0

∫
S1

x⋆
sλ+

∫
S1
dH

(
ζ(t)

)
dt

2. Show that
d

ds

∣∣∣∣
s=0

x⋆
sλ = x⋆Lζλ, where L denotes the Lie derivative.

3. Using the sign convention iXH
ω = −dH, show that:

dAH(x)ζ =

∫
S1
dλ(ẋ(t)−XH(x(t)), ζ(t))dt (2)

4. State and prove a ”Principle of Least Action” for periodic orbits.
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Remark. If you are familiar with Morse theory, then the previous exercise may have given
you ideas. Morse theory is a homological construction meant to detect critical points of
functions f : M → R on (finite-dimensional) manifolds. It does so by connecting these
critical points by trajectories of the flow of −∇f (one can prove that such trajectories
have to end in critical points f); and then using these trajectories to define a ”differential”
(an algebraic map between formal sums of critical points), and then a homology theory.

In our case, if we could do the same with AH : C∞(S1,M) → R, we could get a homology
theory which records periodic orbits of our Hamiltonian flow (from a physics point of
view: trajectories of our physical system). The obstruction, however, is that C∞(S1,M)
is infinite-dimensional, making the constructions much more technical. Re-proving the
statements from Morse theory on such infinite-dimensional manifolds is the essence of
Floer theory ; which has become a major subject in symplectic topology.
The next (bonus) exercise is a first step in this direction, which follows from Exercise

3. It aims to explain which objects we will use to connect critical points of AH .

Exercise† 4.
We are in the same set-up as exercise 1, with P := C∞(S1,M), and AH defined as in
(1). You may use without proof the fact that:

∀ζ1, ζ2 ∈ TxP : ⟨ζ1, ζ2⟩ :=
∫
S1
g
(
ζ1(t), ζ2(t)

)
dt =

∫
S1
ω
(
ζ1(t), Jtζ2(t)

)
dt (3)

defines an L2-metric on P, and that the gradient ∇ w.r.t to it is defined as usual.

1. Let u = u(s, t) denote a cylinder R× S1. Show that the equation:

∂u

∂s
= −∇AH

(
u(s)

)
can be re-written:

∂u

∂s
+ J

∂u

∂t
+∇H = 0 (4)

This is called the Floer equation. Given a solution u, we define its energy:

E(u) :=

∫
R×[0,1]

∣∣∣∣∂u∂s
∣∣∣∣2ds ∧ dt (5)

2. Show that E(u) = 0 ⇐⇒ u ≡ x where x is such that dAH(x) ≡ 0 (in other words,
E(u) = 0 iff u is constantly equal to a periodic orbit of the Hamiltonian flow).

3. Show that E(u) can be re-written:

E(u) =

∫
R×[0,1]

ω

(
∂u

∂s
,
∂u

∂t
−XH

)
ds ∧ dt

4. Prove the following proposition:

Proposition 0.1. Let u : R× S1 → M be a smooth cylinder which solves the Floer
equation (4), and such that:

lim
s→−∞

u(s, t) = x(t), lim
t→+∞

u(s, t) = y(t)

where x and y are periodic orbits of the flow of H. Then, we have:

E(u) = AH(x)−AH(y) (6)
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