Problem Sheet #5

Symplectic geometry. 2024 Winter Term. Heidelberg University Course taught by J.-Pr. Agustín Moreno^{*}

November 11, 2024

Please solve the following problems. Show all your work and justify your answers. The dagger † denotes optional exercises.

Please, hand in this property before Friday Nov. 15 (either in person at the exercise class, or by email at alimoge@mathi.uni-heidelberg.de)

Problems

We recall the Weinstein neighbourhood theorem: Let (W, Ω) be a compact symplectic manifold, and $L \subset W$ a compact Lagrangian. Then there exists a neighbourhood U of L in W which is symplectomorphic to a neighbourhood of the zero section in $(T^{\star}L, \omega_{\text{std}})$, where we identify the zero section with $L \hookrightarrow T^{\star}L$.

Exercise 1. Let (M, ω) be a compact symplectic manifold with $H^1_{dR}(M) = 0$ (i.e all closed 1-forms are exact), and which we embed in T^*M as the zero section.

- 1. Let σ be a 1-form on M. Recall under which conditions $Graph(\sigma)$ is Lagrangian in T^*M .
- 2. Show that if σ is sufficiently \mathcal{C}^1 close to zero, then $Graph(\sigma)$ intersects the zero section in T^*M at least twice.

Exercise 2. Let (M, ω) be a compact symplectic manifold with $H^1_{\text{dr}}(M) = 0$ and $f: M \to M$ a symplectomorphism.

- 1. Show that $Graph(f)$ is Lagrangian $(M \times M, \omega \oplus \omega)$, where $\omega \ominus \omega := (\omega, -\omega)$.
- 2. Provided that f is sufficiently \mathcal{C}^1 close to the identity, explain how one can identify $Graph(f) \subset M \times M$ with $Graph(\eta) \subset T^*M$ for some closed 1-form η on M.
- 3. Deduce that if f is a symplectomorphism which is sufficiently \mathcal{C}^1 close to the identity, then it has at least two fixed points.

This result can be refined by working on specific manifolds. For example, if $M = \mathbb{S}^2$, then every symplectomorphism has at least two fixed points. And since dim $\mathbb{S}^2 = 2$, this can be rephrased as saying that every area-preserving diffeomorphism of \mathbb{S}^2 has at least two fixed points. And both of these conditions are essential!

[∗]For comments, questions, or potential corrections on the exercise sheets, please email alimoge@mathi.uni-heidelberg.de, or ruscelli.francesco1@gmail.com

- 4. Note that when we say "area-preserving", we really mean "area-form preserving"; so that our map not only preserves the absolute value of the area, but also the orientation. Show that, if we drop the second condition, then one can find diffeomorphisms of \mathbb{S}^2 with **zero** fixed point.
- 5. Find an example of diffeomorphism on \mathbb{S}^2 with exactly one fixed point.

Hint: so you want your group to act freely on $\mathbb{S}^2\setminus\{pt\}$. What is this diffeomorphic to?

Exercise 3. Consider \mathbb{R}^2 with coordinates (q, p) , and the action of \mathbb{R} on \mathbb{R}^2 consisting of translation in the q -coordinate. Show that its moment map is given by p , the standard (linear) momentum from classical physics.

Exercise 4. Let SO_3 denote the Lie group of rotations in \mathbb{R}^3 , and recall that:

$$
\mathfrak{so}_3 = \text{Lie}(SO_3) = \left\{ A \in \mathcal{M}_3(\mathbb{R}) \: \mid \: A + A^t = 0 \right\}
$$

1. Show that there is an isomorphism of Lie algebras $(\mathfrak{so}_3, [\cdot, \cdot]) \longrightarrow (\mathbb{R}^3, \times)$ given by:

$$
\psi: \mathfrak{so}_3 \longrightarrow \mathbb{R}^3 : \begin{pmatrix} 0 & -a_3 & a_2 \\ a_3 & 0 & -a_1 \\ -a_2 & a_1 & 0 \end{pmatrix} \longmapsto \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix}
$$

- 2. Compute the infinitesimal generator of the standard action of SO_3 on \mathbb{R}^3 .
- 3. Deduce that $\mu = \vec{q} \times \vec{p}$ (the physical angular momentum) is a moment map for the action.