Problem Sheet #3

Symplectic geometry. 2024 Winter Term. Heidelberg University Course taught by J.-Pr. Agustín Moreno^{*}

October 28, 2024

Please solve the following problems. Show all your work and justify your answers. The dagger † denotes optional exercises.

Please, hand in this property before Friday Nov. 8 (either in person at the exercise class, or by email at alimoge@mathi.uni-heidelberg.de)

Problems

Let V be an even-dimensional real vector space with a non-degenerate 2-form ω . Given a vector subspace $S \subset V$, we define:

$$
S^{\omega} := \{ v \in V \mid \omega(v, w) = 0 \quad \forall w \in S \}
$$
\n⁽¹⁾

Furthermore, we make the following definitions:

- S is symplectic if $S \cap S^{\omega} = \{0\}.$
- S is isotropic if $S \subseteq S^{\omega}$.
- S is co-isotropic if $S \supseteq S^{\omega}$.
- *S* is Lagrangian if $S = S^{\omega}$.

Exercise 1. Prove the following:

- 1. S is symplectic $\iff S^{\omega}$ is symplectic $\iff \omega|_S$ is non-degenerate.
- 2. S is isotropic $\iff \omega|_S \equiv 0$.
- 3. S is co-isotropic $\iff S^{\omega}$ is isotropic.
- 4. S is Lagrangian $\iff \omega|_S \equiv 0$ and dim $S = \frac{1}{2}$ $\frac{1}{2}$ dim S.

Exercise 2. Consider $M = \mathbb{R}^{2n}$ with the standard symplectic form $\omega_0 = \sum dq_i \wedge dp_i$. A diffeomorphism $f: \mathbb{R}^{2n} \to \mathbb{R}^{2n}$ is called a symplectomorphism if $f^*\omega_0 = \omega_0$, i.e it preserves the symplectic form.

[∗]For comments, questions, or potential corrections on the exercise sheets, please email alimoge@mathi.uni-heidelberg.de, or fruscelli@mathi.uni-heidelberg.de

1. Compute ω_0^n , and show that symplectomorphisms of $(\mathbb{R}^{2n}, \omega_0)$ are volume-preserving.

Let $H : \mathbb{R}^{2n} \to \mathbb{R}$ be a Hamiltonian, X_H its Hamiltonian vector field (i.e the unique vector field such that $\omega_0(X_H, \cdot) \equiv dH$, and $\phi_H^t : M \to M$ the flow of X_H .

- 2. Let $\psi := \phi^{t-1}$ be the time 1 map of the flow. Show that ψ is a symplectomorphism.
- 3. Show that there is a bijection:

$$
\{ \text{Fixed points of } \psi \} \longleftrightarrow \{ 1 \text{-Periodic orbits of the flow} \} \tag{2}
$$

(Note: 1-periodic means the orbit has period 1, though this is not necessarily the minimal period).

Exercise 3. $\star Q$ be a cotangent bundle, with coordinates q_i, p_i , and standard symplectic form ω . Consider a 1-form α on Q, and write $Graph(\alpha)$ its graph as a function $Q \to T^*Q$ (where Q is viewed as the zero section in T^*Q).

- 1. Show that $Graph(\alpha)$ is Lagrangian in $T^*Q \iff \alpha$ is closed.
- 2. Let (M, ω) be a symplectic manifold, and $H : M \to \mathbb{R}$ a time-independent Hamiltonian. Show that if N is a Lagrangian contained in a regular level set of H , then N is invariant under the Hamiltonian flow.
- 3. Say now that $H : M \times \mathbb{R} \to \mathbb{R}$ is allowed to be time-dependent, and define:

$$
\widehat{M} := M \times \mathbb{R} \times \mathbb{R}
$$

$$
\widehat{H} := \widehat{H}(m, h, t) := H(m, t) - h
$$

$$
J \in \text{End}(T\widehat{M}) \text{ s.t } J|_{M} \text{ is almost complex, and } J\partial_{h} = \partial_{t}
$$

Show that $\hat{\omega} := \omega - dh \wedge dt$ defines a symplectic structure on \widehat{M} , and that the Hamiltonian vector field of \hat{H} is given by:

$$
X_{\widehat{H}} = X_{H_t} + \partial_t + (\partial_t H)\partial_h
$$

- 4. Take M as above, assume the symplectic form is exact (i.e $\omega = d\lambda$); and define the 1-form $\alpha := \lambda - H dt$. Show that the Lagrangian submanifolds $\widehat{N} \subset \widehat{W}$ lying in the energy level set $\{\widehat{H} = 0\}$ are exactly those submanifolds $\widehat{N} \subset \{\widehat{H} = 0\}$ such that $\alpha|_{\widehat{N}}$ is closed.
- 5. Let $\widehat{N} \subset M \times \mathbb{R}$ be Lagrangian, like in [\(4\)](#page-1-0). Show that for every $t, N_t := \widehat{N} \cap (M \times \{t\})$ is Lagrangian in $M \times \{t\}$.

Exercise[†] 4. (Algebraic topology parenthesis) This exercise is a prerequisite for Exercise 5, where we will define a famous loop invariant from Symplectic Geometry. Consider the spaces:

$$
U_n := \{ U \in \mathcal{M}(\mathbb{C}^n) \mid UU^{\dagger} = U^{\dagger}U = \text{id} \}
$$

$$
O_n := \{ O \in \mathcal{M}(\mathbb{R}^n) \mid O O^t = O^t O = \text{id} \}
$$

as well as $SU_n := \text{ker} \{ \det : U_n \to (\mathbb{C}^*, \times) \}, SO_n := \text{ker} \{ \det : O_n \to (\mathbb{C}^*, \times) \};$ and where t denotes the transpose, and † the Hermitian conjugate.</sup></sup>

We recall from linear algebra that any matrix in SO_n can be turned into a block diagonal matrix: $D = D_1 \oplus \cdots \oplus D_n$, where either $D_i = (1)$, or $D_i \in SO_2$; and from algebraic topology that a fibration $F \hookrightarrow E \twoheadrightarrow B$ induces a long exact sequence in homotopy:

 $\cdots \longrightarrow \pi_n(F) \longrightarrow \pi_n(E) \longrightarrow \pi_n(B) \longrightarrow \pi_{n-1}(F) \longrightarrow \ldots$

Our goal in this exercise is to show the following: $\boxed{\forall n \geq 2 : \pi_1(SU_n/SO_n) = 0}$.

- 1. Show that it suffices to show that SU_n is simply connected, and that SO_n is pathconnected.
- 2. Show that, for $n \geq 2$, SO_n is path-connected.
- 3. Show that SU_{n+1} acts transitively on \mathbb{S}^{2n+1} . Deduce that there exists a fibration $SU_n \hookrightarrow SU_{n+1} \twoheadrightarrow \mathbb{S}^{2n+1}.$
- 4. Deduce that $\forall n \geq 2 : \pi_1(SU_n/SO_n) = 0$ (it might be helpful to use the identification $SU_2 \cong \mathbb{S}^3$).

Exercise 5. (The Maslov index) Let $V = \mathbb{C}^n$, and define Λ to be the space of Lagrangians in \mathbb{C}^n . Recall from lectures that $\Lambda \cong U_n/O_n$. Use the results from the previous exercise to show:

- 1. Show that the map $\rho: U_n/O_n \to \mathbb{S}^1: u \mapsto (\det u)^2$ is well-defined.
- 2. Show that ρ descends to an isomorphism $\rho_\star : \pi_1(U_n/O_n) \stackrel{\cong}{\to} \mathbb{Z}$, and deduce that one can associate a homotopy invariant $\mu \in \mathbb{Z}$ to any loop of Lagrangians in \mathbb{C}^n . This μ is called the Maslov index.