
Problem Sheet #2

Symplectic geometry. 2024 Winter Term. Heidelberg University
Course taught by J.-Pr. Agust́ın Moreno∗

October 27, 2024

You are allowed to hand in solutions to this Problem Sheet by pairs of two students, if
you desire. Please, solve all the exercises, and show your working.
Please, hand in this problem sheet before Friday Nov. 1 (either in person at the

exercise class, or by email at alimoge@mathi.uni-heidelberg.de).

Problems

Exercise 1. (Hamiltonian flow) Recall the definition of the usual gradient:

Definition 0.1. Let (N, g) be a Riemannian manifold, and f : N → R. Its gradient is
defined as the unique vector field ∇f satisfying g(∇f, ·) = dH.

1. Why is ∇f well-defined and unique?

2. Let (M,ω) be a symplectic manifold. Show that a function H : M → R naturally
induces a vector field XH . We call XH the Hamiltonian vector field.

3. Say M = R2n, with coordinates q1, . . . , qn, p1, . . . , pn, and with symplectic form:

ω0 =
n∑

i=1

dqi ∧ dpi

Express XH in terms of ∇H and J0. Here, J0 = i ⊕ · · · ⊕ i denotes the standard
complex structure on R2n ∼= R2 ⊕ · · · ⊕ R2, where:

i =

(
0 −1
1 0

)
∈ GL(R2)

4. Still on (R2n, ω0), show that the flow of XH describes the Hamiltonian equations of
motion, from classical physics. This flow is called the Hamiltonian flow.

∗For comments, questions, or potential corrections on the exercise sheets, please email
alimoge@mathi.uni-heidelberg.de, or fruscelli@mathi.uni-heidelberg.de
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Exercise 2. (In physics) Let us now study a concrete example. Assume we have an
object moving in position space Rn, with position q(t). We denote its momentum by
p(t) := q̇(t), which is a vector living in a different copy of Rn, momentum space. Then,
our object is described by coordinates (q, p) ∈ R2n = Rn ⊕ Rn (phase space).
In classical mechanics, an object is fully determined by its total energy:

H = Kinetic Energy + Potential Energy =
1

2
∥p∥2 + V (q)

This is a function R2n → R, which we call the Hamiltonian, and where V is such that
F = −∇V , where F is the force applied on the system.
From now on, assume we work on the real half-line, and have a spring with origin at 0,
as well as a mass attached to the spring, whose position we denote by q.

q

By Hooke’s law, the force on the mass is given by F = −kq, where k > 0 is a constant.

1. ComputeXH , and draw the Hamiltonian flow of this system on phase space (without
solving the differential equations).

Let q1, . . . , qn, p1, . . . , pn be coordinates on R2n, and let f, g : R2n → R be differentiable
functions (to which one may add time-dependence, if they wish). Then we define their
Poisson bracket:

{f, g} :=
∑
i

∂f

∂qi

∂g

∂pi
− ∂f

∂pi

∂g

∂qi

2. Given ω0 the standard symplectic form on R2n, show that {f, g} = ω0(Xf , Xg).

3. Prove the following result from classical mechanics:

Proposition. Let H be a Hamiltonian describing a physical system. A time-
independent function f = f(q, p) is constant along the motion iff {f,H} ≡ 0.

4. Say f is now time-dependent. Compute df/dt along physical trajectories of the
system (i.e, solutions to the Hamiltonian equations of motion).

Deduce that f is constant along the motion iff {f,H}+ ∂tf = 0.

Exercise 3. Let V be an arbitrary, even-dimensional real vector space. An almost
complex structure is a map J ∈ GL(V ) such that J2 = −id. A linear symplectic form
ω is a non-degenerate 2-form on V . And we define the following spaces:

S(V ) := {Linear symplectic forms on V }
J (V ) := {Almost complex structures on V }

Given ω ∈ S(V ) and J ∈ J (V ), we say that J is compatible with ω if:
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• J is an isometry with respect to ω (i.e J⋆ω = ω)

• ∀v ∈ V \{0} : ω(v, Jv) > 0

And we write J (V, ω) = {J ∈ J (V ) | J is compatible with ω}.

1. Show that J is compatible with ω ⇐⇒ the expression gJ := ω(·, J ·) defines an
inner product on V .

2. Show that J is compatible with ω ⇐⇒ it is an isometry with respect to gJ .

In Exercise 1, we defined the standard complex structure J0 on R2n. And in [Problem
Sheet 1, Ex. 1], you proved that if you take g0 to be the Euclidean inner product on R2n,
then the associated linear symplectic form must be:

ω0 =
n∑

i=1

vi ∧ wi (1)

where {v1, w1, . . . , vn, wn} is a basis for R2n, and {v1, w1, . . . , vn, wn} is the dual basis. In

other words, g0 = ω0(·, J0) .

3. Show that the following three statements are equivalent:

• J is compatible with ω.

• There exist u1, . . . , un ∈ V such that {u1, Ju1, u2, Ju2, . . . , un, Jun} form a basis of
V , and such that:

∀i, j : ω(vi, Jvj) = δij, ω(vi, vj) = 0 = ω(Jvi, Jvj)

• There is a vector space isomorphism ϕ : R2n
∼=−→ V such that

{
ϕ⋆ω = ω0

ϕ⋆J = J0

Exercise 4. (The symplectic group) Consider an inner product space (V, g) with
basis B = {v1, w1, . . . , vn, wn}, and consider the linear symplectic form ω0 from (1).
Then, we define the symplectic group on V :

Sp(V ) := {A ∈ GL(V ) | A∗ω0 = ω0} (2)

where the pullback A∗ω0 is defined as ω(A0·, A0·). We write J the standard complex
structure on V . In other words, we have Jvi = wi and Jwi = −vi.

1. Show that A ∈ Sp(V ) ⇐⇒ AtJA = J .

2. Argue that Sp(V ) is a Lie group.

Recall that the Lie algebra g of a Lie group G is defined as T1G, where 1 is the identity
in G. Write sp(V ) = Lie(Sp(V )).

3. Let ψ(t) be a path in Sp(V ). Differentiate ψ(t). Deduce that:

B ∈ sp(V ) ⇐⇒ BtJ + J tB = 0 (3)

Hint: for the ( ⇐= ) direction, recall that B ∈ g =⇒ (t 7→ exp(tB)) is a path in G, where exp
denotes the standard matrix exponential.
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