## Algebraic topology review

Symplectic geometry. 2024 Winter Term. Heidelberg University Course taught by J.-Pr. Agustín Moreno<sup>\*</sup>

November 22, 2024

This sheet is **optional** and will not be subject to grading. It is meant as a reminder of some useful notions from algebraic topology. None of the material in this sheet is examinable nor strictly necessary to follow the course.

## Problems

**Exercise 1.** Consider a polygon with 4g edges which are grouped into g tuples, each consisting of four consecutive edges labeled in clockwise order by  $a_k, b_k, a_k^{-1}, b_k^{-1}$  for  $1 \le k \le g$  (see the figure below for the case g = 2). By identifying the edges according to the labeling, one obtains a closed orientable surface  $\Sigma_g$  of genus g. Compute  $H_1(\Sigma_g)$ .



**Exercise 2.** Define the unreduced suspension  $\Sigma X$  of a space X to be the quotient space of  $[0,1] \times X$  obtained by identifying  $\{0\} \times X$  and  $\{1\} \times X$  to points. Show that there is a natural isomorphism  $\tilde{H}_i(X) \cong \tilde{H}_{i+1}(\Sigma X)$ .

**Hint:** consider the two cones  $C_+X = \{[t, x] \in \Sigma X \mid t \ge \frac{1}{2}\}$  and  $C_-X = \{[t, x] \in \Sigma X \mid t \le \frac{1}{2}\}$ 

**Exercise 3.** Given two disjoint connected *n*-manifolds  $M_1$  and  $M_2$ , their connected sum  $M_1 \# M_2$  is defined by deleting the interiors of closed *n*-balls  $B_1 \subseteq M_1$  and  $B_2 \subseteq M_2$  and identifying the resulting boundary spheres  $\partial B_1$  and  $\partial B_2$  via some homeomorphism

<sup>\*</sup> For comments, questions, or potential corrections on the exercise sheets, please email alimoge@mathi.uni-heidelberg.de, or ruscelli.francesco1@gmail.com

between them. Show that for a closed connected orientable *n*-manifolds  $M_1, M_2$  there are isomorphisms

$$H_i(M_1) \oplus H_i(M_2) \cong H_i(M_1 \sharp M_2)$$

for 0 < i < n.

**Exercise 4.** Let  $f: M \to N$  be a map between connected closed orientable manifolds and suppose there is a ball  $B \subseteq N$  such that  $f^{-1}(B)$  is the disjoint union of open ball  $B_1, \ldots, B_k \subseteq M$  which each het mapped homeomorphically onto B. Show that the degree of f is  $\sum \epsilon_i$ , where  $\epsilon_i = \pm 1$  according to whether  $f_{B_i}: B_i \to B$  preserves or reverses local orientations induced by the fundamental classes [M] and [N].