Take-away: there are many variants of Flore theory, depending on the problem we studie.

eg of interest. Circular Restricted 3-Body Problem

Set-up: 3 masses (Earth, Voor, Satellite) under the influence of Neutonian gravity. $\left(\left|\mathbf{f}_{ab}\right| = \frac{Gmamb}{\left|q_{a}-q_{b}\right|^{2}}\right)$

Assumptions: Mg=0 (RESTRICTED)

• M moves in a circle around E (CIRCULAR) Note: IRL, the toon's orbit has eventr--icity ex0.05

Thum (Horeno, van Koert): for four energies, can reduce this problem to a Hamiltonian problem on $W \simeq D^* B^2$. 3 of position d 3 of momentum (So drop fran 6 divensions to 4. Will be more precise later). symplectic honology Cor. SH*(D*S²) determines periodic orbits in the CR3BP. Cor. HW* (D*S2) determines Lagrangian intersections in the CR3BP. what are these ? - > trajedories with specific boundary conditions. Lo see Moreno - L. 2024 (both papers)

Example of application: Thu (Moreno, van Koest 2021) I as by many periodic orbits in the CR3BP. R sketch: · can reduce the problem to D*S² off-the-shelf • a fancus theorem (Abbandandolo - Schwarz 2004) shows that I manifold M: $SH_{*}(D^{*}M) \cong H_{*}(\Omega M)$ Singelan bard foop space handlogen on M · standard algebraic topology shows that $\dim H_*(\Omega S^2) = \infty$ 4

• \Rightarrow dim SH*(TD^*S^2) = ∞ · but SH_ (D'S) counts periodic orbits (up to homology). · Jably many orbit. \square

<u>Note:</u> this is very simplified. In real life, are needs to be very coneful, especially since our Hamftonian could be degenerate. Also need more assumptions (twist Condition, convexitive range ...) See [Moreno, van kaest 2021] for full proof.

II. Reducing problems to Floer problems. • if already working on a closed symp. manifold/Licaville domain: · Else, how de we produce one? ·cg : CR3BP $\cdot m_s = 0$ ~ • M moves and E in a circle •S (= b can choose a rotating) Branne in the Earth-Moon plane) => fix their pos. to P and E want to study the satellite. Position space: R³ Phase space : T* R3 = R6 = {(9,p)}

6

Hamiltonian of the satellite:
H:
$$T^*(\mathbb{R}^3 | \exists \vec{E}_3 \vec{\pi}_3^2) \longrightarrow \mathbb{R}$$

 $(q_3 p) \longmapsto \frac{1}{2} |p|^2 - \frac{me}{|q-\vec{e}|} - \frac{mn}{|q-\vec{e}|} + \frac{q_1 p_2 - q_2 p_1}{|q-\vec{e}|}$
 $(angular)$
This term appear to we chose a coloring fame in
 $\mathbb{R}e q_1 q_2 - plane$.

Pbm: it has singularities.
Judged,
$$q \rightarrow E'$$
, or $q \rightarrow H'$ (= collision)
 $\Rightarrow are of the terms \frac{mE}{19-E_1} \circ \frac{mn}{19-H_1}$
block up to so

i.e: As the satellite approaches collision with the Earth, its momentum goes to a. 8

Evergy hypersurfaces H⁻(c) are <u>non-compact</u>. Whow to compactify them?

Regularization at collisions. Regularizing (in this context) many changing coadinates so as to compactifies H⁻¹(c).

-> by now standard. Many ways to de this, depending on what we want our regularization to satisfies.

Ľ

Moser regularization Right now we have: $(q \rightarrow \vec{E} \propto \vec{H}) \Rightarrow (p \rightarrow \infty)$ So H-'(c) C T*(R³| ξĒ, πζ) and the blow up happens in the fibers as q approaches E or Mi in the base space.

Kecipe : T*R3 Swap T*R3 Compactify T*S3 (٩-رم) (_۲-رم) so blow up now happens in the base copy by adding the point S^{R} (in $T^{*}R^{3} = R^{2} \mathbb{C}R^{3}$) {p=\$2. Formally, The reason for the - sign we simpley apples is so that the symp. an inverse stereographic structure is preserved

New Hamiltonian in these coordinates:

H: T*S³→ R (regularized HaniAonian)

Conclusion: after regularizing at collisions, CR3BP is described by: $\widetilde{H}: T^*S^3 \to \mathbb{R}$

n by conservation of energy, motion of the satellite is constrained to $\widetilde{H}^{-1}(c) \cong \mathbb{S}^*\mathbb{S}^2 - \text{compact}!$ for tow evergies.

have a Reel flow on StD3-compact

A Plom: our Floer Preories are defined on symp. mgds (even-dimensione) dim 5 5 = 5

Can we still drop one dimension?

Yes! Great insight from Poincaré, in l'Roincarés last geauctic thereis (1912)in the ctxt of studying the 3BP 13

Deg: Let M any manifold, and $\Phi^{t}: M \longrightarrow M$ a flow. A hypersurface Z - M is called a Poincaré section j; • ϕ^t is transverse to $int(\Sigma)$ · 22 is \$t-invasiant (is ≠ \$) • ∀xe∑: ∃[€+>0 2>_35 8.t $\phi^{t_{\pm}}(x) \in \Sigma$ ie, VxEZ, he flow of ze returns to Z both in the past and frature. 14

$$f_{(x)} = f_{(x)} = f_{($$

Thm: in the CR3BP, after regularizing at collisions and restricting to an energy level set H⁻¹(c), \exists Poincaré section $W \hookrightarrow H^{-1}(c)$.

More precisely:

	Planar CR3BP	Spatial CR3BP
Proven by	Poincare (1912)	Moreno, van Kaert (2020)
Phase space	T*R ²	T*R3
Regularized phase space	T*\$ ²	T*S ³
H-'(c)	S [*] S ² ≅ ℝP ³	$\mathbf{S}^*\mathbf{S}^3 \cong \mathbf{S}^{3_{X}}\mathbf{S}^2$
W	D'D'~ Std.	D*S ²
Licuville domains. (proven in problem sheet 3) 16		

Can now construct Floer theories on these Poincaré sections, since they are Liouville domains. II. Concrete applications of Floer theory plums Floer theory provides groups HF* to describe physical plans globally. Lagr. intersations at are Hence well-suited for statements like & I as by many orbits/intersations » which make use of the global topologie of the underliging manifolds. Can also do this beatly! (Oh 36, Ginzburg 10, Moreno-2. 24) 17

Given one orbit Can extractaninteger invariant XEZ from Fler handogy. Numerically comptable (Aydin 23, Aydie, Hocens, var Keet, 24) st:

So jig we do numerical continuation of trajectories, this invariant tells us whether we have missed orbits.

State-of-the-art: The methods discussed today are Very popular in 3 research groups: and all their oguesol subsequent students Otto van Vaert o gove on (Seoul, Korea) in Fler theory • Agustin Moreno (Heidelberg) ~ Socies on Lynamics (Mussa Stors)