$$A \cdot E(g) \longrightarrow E(r)$$

$$\underset{i}{\overset{"}{}} \underbrace{F_{i}^{i}}_{j}(x_{j}^{i_{i}}y_{j}^{i_{i}}) \geq 1$$

2. By 1.,
$$\exists \int_{A_s}^{A_r} \in Sp(2n)$$
 s.t
 $A_r E(g) = E(r)$
 $A_s E(g) = E(s)$
 $\exists A_r' E(r) = A_s^{-1} E(s)$
 $\exists E(s) = B E(r)$
 $(B = A_s A_r^{-1} \in Sp(2n))$
 $e^{-1} B_s def^{-1}$, here is what our matrices do:
 $boxis in which
std. basis A_r $fe_{i_s} g_{i_s}^{-1}$
 A_s
 $fe_{i_s} g_{i_s}^{-1}$
 $B_s fe_{i_s} g_{i_s}^{-1} = B fe_{i_s} g_{i_s}^{-1}$$

r in the basis $\{e_i, g_i\}, g_i$ is given by $\{e_i, e_i\}, \{e_i, g_i\} = \begin{pmatrix} \frac{1}{r_i^2}, \frac{1}{r_i^2} \end{pmatrix}$ in the basis fei, fiz, must have: $D_{s} = C D_{r} C^{-1} = \begin{pmatrix} \langle e_{i}^{2}, e_{i}^{2} \rangle \\ \vdots \\ \langle S_{i}^{2}, S_{i}^{2} \rangle \end{pmatrix}$

 $= \left(\begin{array}{ccc} \frac{1}{S_{1}^{2}} & & \\ & \ddots & \frac{1}{S_{n}^{2}} \end{array}\right)$ = both matrices are similar = same eigenvalues $\Rightarrow \left\{ \frac{1}{c_i^2} \right\} = \left\{ \frac{1}{S_i^2} \right\}$

 \Box

Ex 2 (Isoparametric inequality) $(V_{\mathcal{J}}\omega) \cong (C^{*}_{\mathcal{J}}\omega_{o}) (w \log)$ $A(\delta) = \frac{1}{2} \int_{0}^{1} (\dot{v}(\epsilon), v(\epsilon)) dt / (definitions)$ $E(\delta) = \frac{1}{2} \int_{0}^{1} ||\dot{v}(\epsilon)||^{2} dt / (definitions)$ $L(\delta) = \int_{0}^{1} ||\dot{v}(\epsilon)|| dt$ $\underbrace{\text{W.T.S}}_{\text{M.T.S}} \left(\left| A(\sigma) \right| \leq \frac{1}{4\pi} L(\sigma)^2 \leq \frac{1}{2\pi} E(\sigma) \right) \right)$ 1) Let's show that $|A(\sigma)| \leq \frac{1}{2\pi} E(\sigma)$ Write down: $Y(t) = \sum_{K \in \mathbb{Z}} e^{2\pi J_0 K t} a_K (a_K \in \mathbb{C}^n)$ Fourier decomposition Then, $\dot{v}(t) = \sum_{k \in \mathbb{Z}} 2\pi k J_0 e^{2\pi J_0 k t} a_k$

 $2A(x) = \int \omega(\dot{x}(t), v(t)) dt$ $)\omega(\cdot,\overline{J}\cdot)=g(\cdot,\cdot)$ $= \int \langle \dot{v}(t), \bar{y}v(t) \rangle dt$ $= \int_{k} \sum_{k} 2\pi k \left(\sum_{k} e^{2\pi \sum_{k} k t} a_{k}, \sum_{k} \sum_{k} (t) \right) dt$ $= \int_{k,l}^{\infty} \sum_{k} 2\pi k \langle e^{2\pi J_0 k t} a_{k} \rangle e^{2\pi J_0 l t} a_{l} \rangle dt$ = $\sum_{k,e}^{2\pi k} \left\{ e^{2\pi J_0 k t} a_{k,e} e^{2\pi J_0 \ell t} a_{e} \right\} dt$ = Ske llak ll² (std. Fourier analysis) \implies A(x) = $\pi \sum_{k} K ||a_{k}||^{2}$

Now compute;

$$E(x) = \frac{1}{2} \int_{0}^{1} ||\dot{y}||^{2} dt$$
$$= \frac{1}{2} \int_{0}^{1} \sum_{k,\ell} 4\pi^{2} k\ell \left\langle e^{2\pi - 5kt} a_{k,\ell} e^{2\pi - 5\ell t} a_{\ell} \right\rangle dt$$

$$=2\pi^2\sum K^2||\alpha_K||^2$$

•
$$A(\sigma) = \pi \sum_{k} K ||a_{k}||^{2}$$

• $\frac{1}{2\pi} E(\sigma) = \pi \sum_{k} K^{2} ||a_{k}||^{2}$
And $|A(\sigma)| = |\pi \sum_{k} K^{2} ||a_{k}||^{2} \le \pi \sum_{k} |K| \cdot ||a_{k}||^{2}$
 $|K| \le V^{2}$
 $|K| \le V^{2}$
 $|K| \le \pi \sum_{k} K^{2} \cdot ||a_{k}||^{2}$
 $= \frac{1}{2\pi} E(\sigma)$

Reverse triang. ineq. :
$$||\vec{\partial}n| - |\vec{\partial}|| \leq |\vec{\partial}n - \vec{\partial}|$$

So we have $|\vec{\partial}n| \longrightarrow |\vec{\partial}| = 1$
In particular:

In particular:

$$A(\tilde{v}_{n}) \leq \frac{1}{2\pi} E(\tilde{v}_{n}) = \frac{1}{4\pi} \int |\tilde{v}_{n}| \quad (1)$$

$$n \rightarrow \infty \int \int |\tilde{v}_{n}| \quad (1)$$

$$A(v) = \frac{1}{4\pi}$$

So
$$A(\mathcal{V}) \leq \frac{1}{4\pi} = \frac{1}{4\pi} L(\mathcal{V})^2$$

true since $L(\mathcal{V}) = 1$ in our case.
but why the 2 factor?
Let $\mathcal{V}^c = C\mathcal{V}$ for $c \in \mathbb{R}_+$
(i.e., a curve of length c).
Then, the equality (1) because

$$|A(\tilde{\mathfrak{d}}_{n}^{c})| \leq \frac{1}{2\pi} E(\tilde{\mathfrak{d}}_{n}^{c}) = \int |\tilde{\mathfrak{d}}_{n}^{c}|^{2}$$

but since we can choose these corres The to simply be re-scalings of our previous Thy we got: $\int |\tilde{\vartheta}_n^c|^2 = \int c^2 |\tilde{\vartheta}_n|^2 = c^2$

So that we do indeed get $|A(r)| \leq \frac{1}{4\pi} L(r)^{L}$ \Box

3) It remains to show : $\frac{1}{4\pi}L(\gamma)^2 \leq \frac{1}{2\pi}E(\gamma)$ $4 = \frac{1}{2} L(r)^2 \leq E(r)$ $\stackrel{!}{\Rightarrow} \frac{1}{2} \left(\int_{0}^{1} |\dot{\mathbf{r}}| \right)^{2} \leq \frac{1}{2} \int_{0}^{1} |\dot{\mathbf{r}}|^{2}$ $\stackrel{follows}{\Rightarrow} \int_{0}^{1} |\dot{\mathbf{r}}|^{2} \leq \int_{0}^{1} |\mathbf{r}|^{2} \int_{0}^{2} \int_{0}^{2} |\mathbf{r}|^{2} |\mathbf{r}|^{2} \int_{0}^{2} |\mathbf{r}|^{2} \int_{0}^{2} |\mathbf{r}|^{2} \int_{0}^{0$

In conclusion: $|A(\sigma)| \leq \frac{1}{4\pi} L(\sigma)^2 \leq \frac{1}{2\pi} E(\sigma)$ Ex.3 $\mathcal{B} = \mathcal{C}^{\infty}(S'_{3}\mathcal{H})$. \mathcal{R}_{s} : path in \mathcal{P} (so a path of boops) in \mathcal{H} $\mathcal{D}_{s} = d | \mathbf{X}_{c}$ Let $C := \frac{d}{ds} |_{s=0} \times s$ (vector field along the loop $x_0 = x$)

Let $A_{k}: \mathcal{D} \to \mathbb{R}$ is $x \to -\int_{\mathfrak{s}'} \mathfrak{x} + \int_{\mathfrak{s}'} \mathfrak{k} \circ \mathfrak{x}$ Then, for $\mathcal{C} \in T_{\mathfrak{z}} \mathcal{D}$: $dA_{k}(\mathfrak{x}) \mathcal{C} = \frac{d}{ds} A_{H}(\mathfrak{x}_{s})|_{s=6}$

 $= -\frac{d}{ds} \int x_{s}^{*} \lambda + \int \frac{d}{ds} H \circ x_{s}$ J, 9H (∑)

Then, $\forall \Theta \in S'_{S}$ the trajectory $S \mapsto \varkappa_{S}(\Theta)$ can be viewed as a flow line of Z_{S} (since $\frac{d}{dS}\varkappa_{S} = Z_{S}$)

And so there is a flow $Y_s : Z \rightarrow Z$ of Ts, where Z is the cylinder $Z = im \left\{ \varkappa_{s}(t) \middle| \begin{array}{c} -\varepsilon \leq s \leq \varepsilon \\ t \in \mathfrak{P}^{l} \end{array} \right\}$ Note that, since $\forall \Theta$, $\Psi^{s}(x_{0}(\Theta)) = x_{s}(\Theta) \frac{dg}{dg}$ we have $[\Psi^{s} \circ z_{o} = z_{s}](*)$ KK. Nows to speak of the Lie derivertives are first needs to extend the flow of Z to a whole whole of im(x) in M. But this can be done w/o issue: just take any smooth extension of our 25 m Z to a nhbd of it. Then: x* Lz ~= xo* Lz ~ $= 2 \frac{1}{s} \lim_{s \to 0} \frac{1}{s} (\Psi_s^* \lambda - \lambda)$ $= \lim_{s \to 0} \frac{1}{s} \left((\Psi_{s} \circ x_{o})^{*} \lambda - x_{o}^{*} \lambda \right)$ $= \lim_{s \to 0} \frac{1}{s} \left(x_{s}^{*} \lambda - x_{o}^{*} \lambda \right)$ $= \frac{d}{ds} \left(2 + \lambda \right) \left|_{s=0} \left(\begin{array}{c} by \ defn \\ c \\ f \\ f \\ he \ derivative \end{array} \right) \right|$

3. We have:

Now, by Cartan's magic gomula: $Z_z \lambda = d(\iota_z \lambda) + i_z d\lambda$ his is an exact 1- forms So its integral along St is Os by Stokes.

• $dA_{H}(x)Z = \int_{a} -x^{*}(izd\lambda) + dH(z)$ since $i_{X_{H}} = -dH$ = $\int -x^{*} (d\lambda(z_{3})) - d\lambda(X_{H}, z)$ for a 1-for $\mathcal{X}^{*} \eta = \eta(\mathbf{x}(t)) dt = -\int_{\mathcal{R}} \left(d\lambda(\mathcal{Z}_{j} \mathbf{x}(t)) + d\lambda(\mathbf{X}_{H}(\mathbf{x}(t)), \mathcal{Z}(t)) \right) dt$

= $\int d\lambda (\dot{z}(t) - X_{h}(x(t)), \mathcal{E}(t)) dt$ **S'**

4. Poinciple of least action: Let (M, w=d) be a campact exact symplectic manifold, and H: M-> TR a Hamiltonian. They periodic orbits of period 1 of H on M correspond to critical points of the action Junctional AH: Em (Sign) - R × ~) - J_x* × + J_ Hox

 $Pf : x: S' \rightarrow M \text{ is a periodic orbif}$ of the glow if $x : (t) = X_{H}(x(t))$ iff $(dA_{H}(x) = \int dx(x - X_{H})) = 0$ S'

Exercise 4:

Hence,
$$\nabla A_{H} = \Im (\dot{z}(t) - X_{H})$$

Therefore, the equation

$$\frac{\partial u}{\partial s} = -\nabla c A_{H}(u(s))$$
reads

$$\frac{\partial u}{\partial s} + J \left(\frac{\partial u}{\partial t} - X_{H}(u(s)) \right) = 0$$

$$A = \frac{\partial u}{\partial s} + J \frac{\partial u}{\partial t} + \nabla H = 0$$

$$T$$

And $\int \frac{\partial u}{\partial F} + \nabla H = 0$ $4=0 \frac{\partial u}{\partial t} = X_{H}(u(t))$ So unis actually a trajectory of the flow (a periodic orbit, since tEB!). 3. $E(u) = \int |\partial_{gu}|^2 dgndt$ Rx R' =) g(dsm,dsm) dsndt $= \int -g(J(\partial_{t}m-X_{H}),\partial_{s}m) dsndt$ Rx S'

$$= \int -\omega (\partial_{t}u - X_{H}, \partial_{s}u) \, ds \, dt$$

RxS'

$$= \int \omega (\partial_s n_j \partial_{\ell} n - X_H) \, ds \, n \, dt$$

$$\mathbb{R} \times S'$$

 \Box

4. Assume
$$u: \mathbb{R} \times S^1$$
 is a cylinder s.t

$$\begin{cases} \lim_{s \to -\infty} u(s, \circ) = x & \text{periodic} \\ \int_{s \to \infty} u(s, \circ) = y & \text{orbits} \\ \int_{s \to \infty} u(s, \circ) = y & \text{of } H \end{cases}$$

Then note:

$$E(u) = \int \omega(\partial_{S}u_{J} \partial_{E}u - X_{H}) \, ds \, dt$$

$$= \int d\lambda(\partial_{S}u_{J} \partial_{E}u - X_{H}) \, ds \, dt$$

$$= -\int dx(\dot{u} - X_{H}, \partial_{S}u) \, ds \, dt$$

 $= -\int d\mathcal{A}_{H}(\partial_{s}u) ds$

 $= -\int_{-\infty}^{\infty} \frac{d}{ds} \left(\mathcal{A}_{H}(\mathcal{A}_{H}(\mathcal{A}_{S})) \right) ds$

 $= \lim_{s \to -\infty} A_{\mathcal{H}}(u(s)) - \lim_{s \to \infty} A_{\mathcal{H}}(u(s))$

 $= A_{H}(x) - A_{H}(y)$