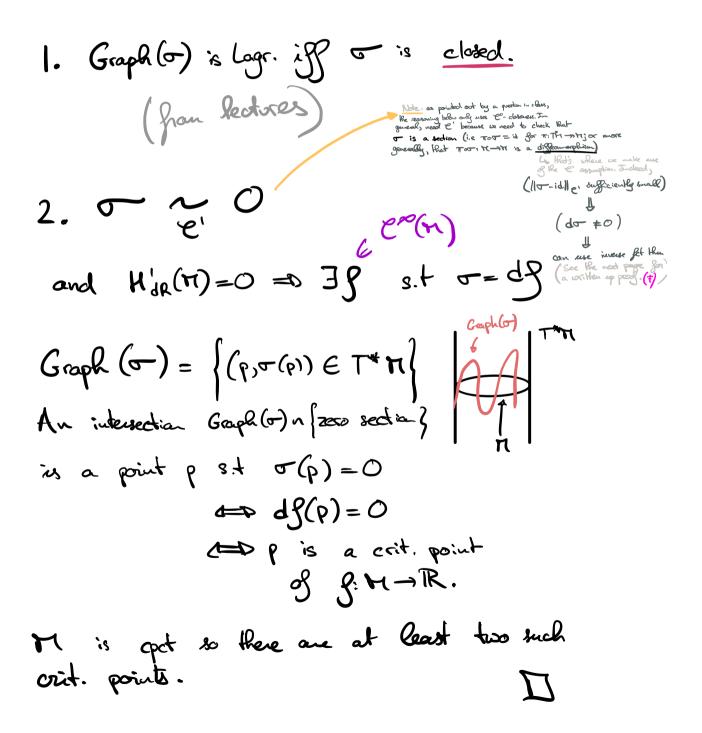
Exercise 1. Let (M, ω) be a compact symplectic manifold with $H^1_{dR}(M) = 0$ (i.e all closed 1-forms are exact), and which we embed in T^*M as the zero section.

- 1. Let σ be a 1-form on M. Recall under which conditions $\operatorname{Graph}(\sigma)$ is Lagrangian in T^*M .
- 2. Show that if σ is sufficiently \mathcal{C}^1 close to zero, then $\operatorname{Graph}(\sigma)$ intersects the zero section in T^*M at least twice.



(\ddagger)

Exercise (i) Let $g : M \to T^*M$ be an embedding which is sufficiently close to the canonical embedding of the zero section in the C^1 -topology. Prove that the image of g is the graph of a 1-form. (ii) Let $g : M \to M \times M$ be an embedding which is sufficiently close to the canonical embedding of the diagonal in the C^1 -topology. Prove that the image of g is the graph of a diffeomorphism.

Solution (i) Let $z: M \to T^*M$ be the zero section embedding. We just need to show that if g is C^1 -close to z then $\phi = \pi \circ g: M \to M$ is a diffeomorphism. Then letting $\sigma = g \circ \phi^{-1}$ we see that σ is an embedding (as a composition of an embedding and a diffeomorphism) and $\pi \circ \sigma = \pi \circ g \circ (\pi \circ g)^{-1} = \text{id}$. Thus such a σ is a section with $\sigma(M) = g(M)$.

Assume that we have put a Riemannian metric g on M, thus inducing a metric (also g) on TM, T^*M and $T(T^*M)$ (the naturally induced metric on a TX and TX given a metric on X is easy to work out, but this is not the point of this question so we won't go into it here). Thus for two maps $\sigma, \tau : M \to T^*M$ and their corresponding differentials $d\sigma, d\tau : TM \to T(T^*M)$ we can define $\|\sigma - \tau\|_{C^0} = \max_{p \in M} \text{dist}_g(\sigma(p), \tau(p))$ and $\|d\sigma - d\tau\|_{C^0} = \max_{(p,v) \in SM} \text{dist}_g(d\sigma_p(v), d\tau_p(v))$ (here SM is the sphere bundle of TM under g), and thus $\|\sigma - \tau\|_{C^1} = \|\sigma - \tau\|_{C^0} + \|d\sigma - d\tau\|_{C^0}$.

Now consider the two maps $\phi = \pi \circ g$ and $i = id = \pi \circ z$. We will start by showing that there is an $\epsilon_1 > 0$ such that $||g - z||_{C^1} < \epsilon_1$ implies that $d\phi : TM \to TM$ is rank n (i.e. it's a local diffeomorphism).

Start by observing that the image di(SM) = SM. This is a compact sub-manifold of TM which is disjoint from the zero section $Z_0 \subset TM$. So the number $d(SM, M_0) = \min_{p \in M_0, q \in SM} d(p, q)$ is non-zero (it's 1 actually, assuming that we define the metric on TM in a reasonable way). Now, there exists a constant C_1 such that $||d(\pi g) - d(\pi z)||_{C^0} \leq C_1 ||g - z||_{C^1}$ (this is evident since $\pi : TM \to M$ is C^{∞} bounded and $d(\pi g) = d\pi \circ dg$). Now suppose that $||g - z||_{C^1} < \epsilon_1 = d(SM, M_0)/C_1$ and, for the sake of contradiction, that $dg_p(v) = 0$ for some $(p, v) \in SM$. Then we see that $d(dg_p(v), di_p(v)) = d((p, 0), (p, v)) >$ $d(SM, M_0) = C_1\epsilon_1$. This contradicts the assumption that $||d(\pi g) - d(\pi z)||_{C^0} \leq C_1||g - z||_{C^1} = C_1\epsilon_1$. Thus dg_p is non-degenerate (rank n) for each p in this case.

Now assume M is connected (the not connected case is just more notationally complicated but it isn't harder). The above argument shows that assuming $||g - z||_{C^1} < \epsilon_1$ implies that $\phi : M \to M$ is a covering map (we can show surjectivity using a continuity argument on M if it's connected). The fiber must be finite since M is compact. But the size of the fiber $|\phi^{-1}(p)|$ is locally constant near points p where dg(p) is non-degenerate, and thus it is constant on M. Then the size of the fiber of g is some integer $n \ge 1$. We see that the fiber can be expressed as $F(\phi) = \int_M \phi^* \mu$ where μ is some fixed volume form with $\int_M \mu = 1$. But the map $F : C^{\infty}(M, M) \to \mathbb{R}$ given by this integral is certainly continuous in the C^1 topology, so for small ϵ_2 we must have $||\phi - i||_{C^1} < C_1 ||g - z||_{C^1} \le C_1 \epsilon_2$ implies $F(\phi) = 1$ and thus that ϕ is a diffeomorphism.

Thus picking $\epsilon = \min(\epsilon_1, \epsilon_2)$ we see that $||g - z||_{C^1} < \epsilon$ implies that g is the graph of a section.

(ii) This admits a similar treatment to (i). Let $\delta : M \to M \times M$ denote the diagonal imbedding, and let $\pi_1, \pi_2 : M \times M \to M$ denote the two projection maps to the different factors. We want to show that if g is C^1 -close enough to δ , then it is the graph of some diffeomorphism. It suffices to show that if g is close to δ

) in pink are the parts where we use the C'assumption.

Exercise 2. Let (M, ω) be a compact symplectic manifold with $H^1_{dr}(M) = 0$ and $f: M \to M$ a symplectomorphism.

- 1. Show that $\operatorname{Graph}(f)$ is Lagrangian $(M \times M, \omega \ominus \omega)$, where $\omega \ominus \omega := (\omega, -\omega)$.
- 2. Provided that f is sufficiently \mathcal{C}^1 close to the identity, explain how one can identify $\operatorname{Graph}(f) \subset M \times M$ with $\operatorname{Graph}(\eta) \subset T^*M$ for some closed 1-form η on M.
- 3. Deduce that if f is a symplectomorphism which is sufficiently C^1 close to the identity, then it has at least two fixed points.

This result can be refined by working on specific manifolds. For example, if $M = \mathbb{S}^2$, then *every* symplectomorphism has at least two fixed points. And since dim $\mathbb{S}^2 = 2$, this can be rephrased as saying that every area-preserving diffeomorphism of \mathbb{S}^2 has at least two fixed points. And both of these conditions are essential!

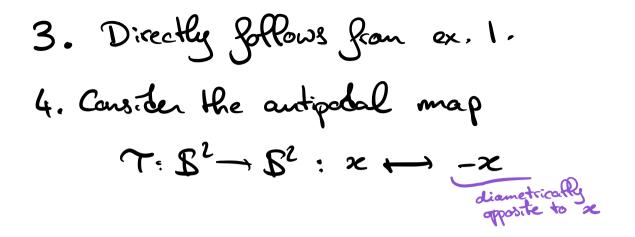
- 4. Note that when we say "area-preserving", we really mean "area-form preserving"; so that our map not only preserves the absolute value of the area, but also the orientation. Show that, if we drop the second condition, then one can find diffeomorphisms of S² with zero fixed point.
- 5. Find an example of diffeomorphism on \mathbb{S}^2 with exactly **one** fixed point. *Hint:* so you want your group to act freely on $\mathbb{S}^2 \setminus \{ pt \}$. What is this diffeomorphic to?

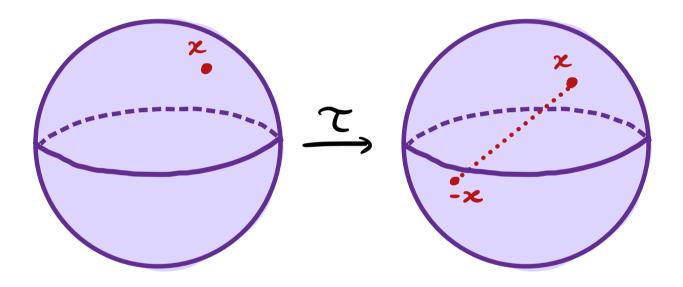
Hence, the statement is true for vector spaces; and a fortioni, becaffy for submfols (because it holds for their tangent spaces). So, locally and every point in Graph(g), one can find a number s.t $is_{I_{Graph}(g)} \equiv 0$.]

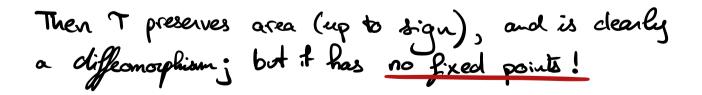
2. Recall that $\Delta = \int (x,x) | x \in \mathbb{N}$ is Lagrangian in MXM. And by the Weinstein nubbe theorem, can find a nube U of Δ in MXM, and map it to a nhbd U'of the zero section (MC TM) in TM.

IS g is sufficiently l'abse to id, then we can ensure that Geaph(g) CU (recall It is cpct).

Hence, Graph (g) can be viewed as a lagrougion in T*M; which, moreover, is in a while of the zero section. Graph(S) -Dif we find a 1-form or on M s.t we can identify Graph (g) a Tixit with Graph (r) a T*11, then by Ex. 1 Jis closed. So how to find such a of "corresponds to" (after identification by Weinstein) Jn T™, Graph(g) ↔ {(z, y) | z ∈ M ye Tz*M Since g is mosth, so is the map × ~ yz which is, by defⁿ, a differential 1-form.



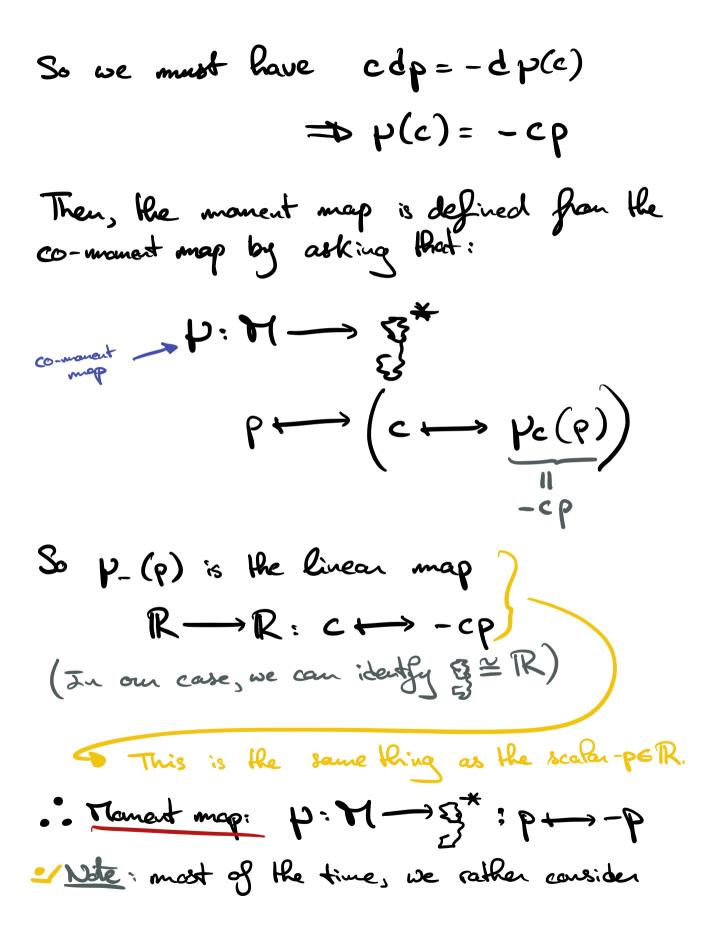




5. Consider the stereographic projection remove N and empold R² Can now act on R² by translations: · fix est eR2 • let $\Psi: \mathbb{R}^2 \to \mathbb{R}^2: \mathcal{X} \longrightarrow \mathcal{X} + cst$ pull this back along the stereographic projection (get Ψ: \$° | SN3 → \$° | SN3) Can continuously endered it so that $\Psi(N)=N$ (follows from the fact that points at as in R2 are mapped to points very close to Non B²) . I has only one Sived point. (And one can easily show it's a differencephism).

Exercise 3. Consider \mathbb{R}^2 with coordinates (q, p), and the action of \mathbb{R} on \mathbb{R}^2 consisting of translation in the *q*-coordinate. Show that its moment map is given by *p*, the standard (linear) momentum from classical physics.

We consider the action ROJR2 $(q_{1}p) \mapsto (q+c_{1}p)$ The infinitesimal generator for this action is $X_c = c \partial_q$ Indeed, pick (q,p) ∈ R², and c ∈ R. The flow line through (9,p) is given by $\mathcal{T}(t) = (q + tc, p)$ with derivative $\delta(t) = c \partial q$. (9,9) $i_{X_c} \omega = i_{X_c} (dq \wedge dp)$ = c dpThe (co-) moment map $\mu: E \longrightarrow e^{\infty}(m)$ is defined s.t $i_{X_c} = -d P(c)$ or +, depending on your convertion



Exercise 4. Let SO_3 denote the Lie group of rotations in \mathbb{R}^3 , and recall that:

$$\mathfrak{so}_3 = \operatorname{Lie}(SO_3) = \left\{ A \in \mathcal{M}_3(\mathbb{R}) \mid A + A^t = 0 \right\}$$

1. Show that there is an isomorphism of Lie algebras $(\mathfrak{so}_3, [\cdot, \cdot]) \longrightarrow (\mathbb{R}^3, \times)$ given by:

$$\psi:\mathfrak{so}_3\longrightarrow \mathbb{R}^3: \begin{pmatrix} 0 & -a_3 & a_2\\ a_3 & 0 & -a_1\\ -a_2 & a_1 & 0 \end{pmatrix} \stackrel{(\uparrow)}{\longmapsto} \begin{pmatrix} a_1\\ a_2\\ a_3 \end{pmatrix}$$

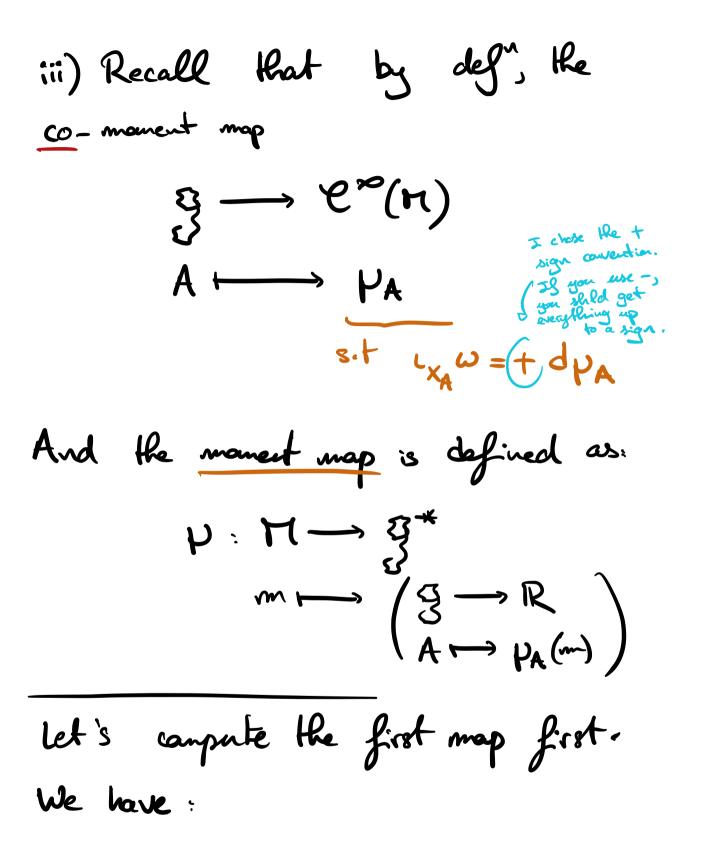
- 2. Compute the infinitesimal generator of the standard action of SO_3 on \mathbb{R}^3 .
- 3. Deduce that $\mu = \vec{q} \times \vec{p}$ (the physical angular momentum) is a moment map for the action. not directly the action SE3 C R³, but its cotangent left

1. First, note that from the condition A+A⁺=O, eveny matrix AE Stz can be withen in the form (+). Clearly, U: SO3 - R3 is an isomorphism of vector spaces; so need to check if preserves the Lie bracket. · calculation (just do it for basis vectors of 803)

 $A_{\upsilon} = \Psi(A) \times \upsilon$

2. From now on, we are considering the cotangent lift to T*R3 (i.e., the induced action SS, OT*R3). Le we're interested in the infinitesimal generator of this action. i.e: For AE SB3, $X_A = \frac{d}{dt}\Big|_{t=0} \left(\exp(tA) \cdot (q_{J}P) \right)$ higher order terms disappear since we differentiate at t=0. $= \frac{d}{dt} |_{t=0} (A \cdot (q_1 p)) = (Aq, Ap)$ $= \frac{d}{dt}\Big|_{t=0}\left(\left(1 + tA + \frac{t^2}{2!}A + \dots\right) \cdot (q_{1}p)\right)$

$$X_{A} = (A_{q}, A_{p}).$$



$$\begin{split} \iota_{X_{A}} & \omega = \left(dq_{A} dq \right) \left(Aq, Aq \right) \\ &= Aq dp - Ap dq \\ \left(\begin{array}{c} rotice : \\ d(p^{t}Aq) \\ = d\left(p^{t}Aq \right) \right) \left(e^{(p^{t}A)dq} + Aq dp^{t} \right) \\ &= d\left(p^{t}Aq \right) \left(e^{(p^{t}A)dq} + Aq dp^{t} \right) \\ &= d\left(p^{t}Aq \right) \right) \left(e^{(p^{t}A)dq} + Aq dp^{t} \right) \\ &= d\left(p^{t}Aq \right) \left(e^{(p^{t}A)dq} + Aq dp^{t} \right) \\ &= e^{(p^{t}A)dq} + Aq dp^{t} \\ &= e^{(p^{t}A)dq} \\$$

And recall there is this cyclic equality for mixing cross & dot products: $\langle a, bxc \rangle = \langle b, cxa \rangle = \langle c, axb \rangle$ Hence, PA = < 4(A), 9×p> And recall we want: $p: \mathcal{M} \longrightarrow \mathfrak{g}^*$ $\begin{array}{c} m \longmapsto \begin{pmatrix} g \longrightarrow \mathbb{R} \\ A \longmapsto \psi_A(m) \end{pmatrix} \end{array}$ Can simply define $p(m) = q \times p \ l_m$ (equivalently, a motive in 503; which we can identify with <. Jaxp> & So3. So moment map: p=9Kp. Л