Exercise 1. Let (M,w) be a compact symplectic manifold with Hi; (M) = 0 (i.e all
closed 1-forms are exact), and which we embed in T*M as the zero section.

1. Let o be a 1-form on M. Recall under which conditions Graph(c) is Lagrangian in
T*M.

2. Show that if o is sufficiently C! close to zero, then Graph(c) intersects the zero
section in T*M at least twice.
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Gk) Exercise (i) Let ¢ : M — T*M be an embedding which is sufficiently close to the canonical
embedding of the zero section in the C'-topology. Prove that the image of g is the graph of a 1-form.
(ii)) Let g : M — M x M be an embedding which is sufficiently close to the canonical embedding of the
diagonal in the C'-topology. Prove that the image of g is the graph of a diffeomorphism.

Solution (i) Let z : M — T*M be the zero section embedding. We just need to show that if g is
Cl-close to z then ¢ = Tog: M — M is a diffeomorphism. Then letting o = g o ¢! we see that o is an
embedding (as a composition of an embedding and a diffeomorphism) and Too = Togo (mog)™! =id.
Thus such a ¢ is a section with o(M) = g(M).

Assume that we have put a Riemannian metric g on M, thus inducing a metric (also g) on TM, T* M and
T(T*M) (the naturally induced metric on a TX and TX given a metric on X is easy to work out, but this
is not the point of this question so we won’t go into it here). Thus for two maps o, 7 : M — T*M and their
corresponding differentials do,dr : TM — T(T*M) we can define || — 7||co = max,epdisty(o(p), 7(p))
and ||do — d7||co = max(y)esmdisty(do,(v), dr,(v)) (here SM is the sphere bundle of TM under g), and
thus |0 — 7|t = ||o — T||co + ||do — d7||co.

Now consider the two maps ¢ = mo g and ¢ = id = 7o z. We will start by showing that there is an
€1 > 0 such that ||g — z||c1 < €1 implies that d¢ : TM — T'M is rank n (i.e it’s a local diffeomorphism).

Start by observing that the image di(SM) = SM. This is a compact sub-manifold of TM which is
disjoint from the zero section Zy C T'M. So the number d(SM, My) = minyeps, qesm d(p, ¢) is non-zero
(it’s 1 actually, assuming that we define the metric on TM in a reasonable way). Now, there exists a
constant Cy such that ||d(7wg) — d(7z)||co < Cillg — z||cr (this is evident since m : TM — M is C*
bounded and d(mg) = dm o dg). Now suppose that ||g — z||cx < &1 = d(SM, M,)/C} and, for the sake of
contradiction, that dg,(v) = 0 for some (p,v) € SM. Then we see that d(dg,(v), di,(v)) = d((p,0), (p,v)) >
d(SM, My) = Ce;. This contradicts the assumption that ||d(7g) — d(72)||co < Ci|lg — z|lcr = Cie1. Thus
dg, is non-degenerate (rank n) for each p in this case.

Now assume M is connected (the not connected case is just more notationally complicated but it isn’t
harder). The above argument shows that assuming ||g — z||c1 < € implies that ¢ : M — M is a covering
map (we can show surjectivity using a continuity argument on M if it’s connected). The fiber must be
finite since M is compact. But the size of the fiber |¢~*(p)| is locally constant near points p where dg(p) is
non-degenerate, and thus it is constant on M .Then the size of the fiber of g is some integer n > 1. We see
that the fiber can be expressed as F(¢) = |, o @i where g1 is some fixed volume form with i) y =1 But
the map F : C*°(M, M) — R given by this integral is certainly continuous in the C*' topology, so for small
¢ —illcr < Ci|lg — z||cr < Cieg implies F(¢) = 1 and thus that ¢ is a diffeomorphism.

€, we must have
Thus picking € = min(e;, €2) we see that ||g — z||c1 < € implies that g is the graph of a section.

(ii) This admits a similar treatment to (i). Let 6 : M — M x M denote the diagonal imbedding, and let
1, T - M x M — M denote the two projection maps to the different factors. We want to show that if g is
C-close enough to §, then it is the graph of some diffeomorphism. It suffices to show that if g is close to &



Exercise 2. Let (M,w) be a compact symplectic manifold with H} (M) = 0 and
f: M — M a symplectomorphism.

1. Show that Graph(f) is Lagrangian (M x M,w & w), where w S w := (w, —w).

2. Provided that f is sufficiently C! close to the identity, explain how one can identify
Graph(f) € M x M with Graph(n) C T*M for some closed 1-form 1 on M.

3. Deduce that if f is a symplectomorphism which is sufficiently C* close to the identity,
then it has at least two fixed points.

This result can be refined by working on specific manifolds. For example, if M = S2,
then every symplectomorphism has at least two fixed points. And since dim S? = 2, this
can be rephrased as saying that every area-preserving diffeomorphism of S? has at least
two fixed points. And both of these conditions are essential!

4. Note that when we say ”area-preserving”, we really mean ”area-form preserving”;
so that our map not only preserves the absolute value of the area, but also the
orientation. Show that, if we drop the second condition, then one can find diffeo-
morphisms of S? with zero fixed point.

5. Find an example of diffeomorphism on S? with exactly one fixed point.

Hint: so you want your group to act freely on S?\{pt}. What is this diffeomorphic to?
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Exercise 3. Consider R? with coordinates (q,p), and the action of R on R? consisting
of translation in the g-coordinate. Show that its moment map is given by p, the standard
(linear) momentum from classical physics.
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Exercise 4. Let SO3 denote the Lie group of rotations in R?, and recall that:
s03 = Lie(S03) = {A e M3(R) | A+ A= ()}
1. Show that there is an isomorphism of Lie algebras (so3, [+, -]) — (R?, x) given by:
0 —az a2 (1-) a
¥ :s03 — R3: | ag 0 —a1 ]| r— | a
—as  ay 0 as
2. Compute the infinitesimal generator of the standard action of SO3 on R3.

3. Deduce that u = ¢ x p’ (the physical angular momentum) is a moment map for the
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