Problem Sheet #2 – Solutions

Symplectic geometry. 2024 Winter Term. Heidelberg University Course taught by J.-Pr. Agustín Moreno^{*}

November 4, 2024

Solutions

Exercise 1.

1. Riemannian metrics are nondegenerate. This means that the map

$$
g^{\sharp} \colon TM \to T^*M : v \mapsto g(v, \cdot)
$$

is a bundle isomorphism. This shows that ∇f is uniquely determined by the requirement $g(\nabla f, \cdot) = df$.

- 2. The Hamiltonian vector field X_H associated to a function $H: M \to \mathbb{R}$ is defined analogously, i.e. $i_{X_H} \omega = dH$. As above, this is well-defined due to nondegeneracy of ω .
- 3. This is a straightforward computation. The expression is

$$
X_H = \sum_{i=0}^n \frac{\partial H}{\partial p_i} \partial_{q_i} - \sum_{i=0}^n \frac{\partial H}{\partial q_i} \partial_{p_i}.
$$

4. From the previous point, the flow of X_H solves the system

$$
\begin{cases} \dot{q}_i = \frac{\partial H}{\partial p_i}, \\ \dot{p}_i = -\frac{\partial H}{\partial q_i} \end{cases}
$$

for all $1 \leq i \leq n$. These are Hamilton's equations from classical physics.

[∗]For comments, questions, or potential corrections on the exercise sheets, please email alimoge@mathi.uni-heidelberg.de, or fruscelli@mathi.uni-heidelberg.de

Exercise 2.

- 1. The potential energy is (up to constant) $V(q) = \frac{1}{2}kq^2$. From the previous exercise we get that $X_H = p\partial_q - kq\partial_p$.
- 2. This is a straighforward computation, using [\(3\)](#page-0-0) of Problem 1.
- 3. We compute

$$
X_H f = df(X_H) = \omega_0(X_f, X_H)
$$

= {f, H}.

This shows that $X_H f = 0 \iff \{f, H\} = 0.$

4. This is the same computation as above, the only difference being that now X_Hf does not compute the time derivative of f along the trajectories, since f is timedependent by assumption. When differentiating with respect to time, the extra term $\partial_t f$ pops up.

Exercise 3.

1. (\Rightarrow) We only need to show that q_J is symmetric. For $v, w \in V$ we have

$$
g_J(v, w) = \omega(v, Jw) = \omega(Jv, -w) = \omega(w, Jv) = g_J(w, v).
$$

- (\Leftarrow) Follow the above argument backwards.
- 2. (\Rightarrow) We have for all $v, w \in V$

$$
g_J(Jv, Jw) = \omega(Jv, J^2w) = \omega(v, Jw) = g_J(v, w).
$$

 (\Leftarrow) Follow the above argument backwards.

3. (1) \implies (2) We argue by induction on dim V. Let $u_1 \neq 0$ be a vector in V such that $g_J(u_1, u_1) = 1$. and consider the subspace $W \subseteq V$ spanned by u_1, Ju_1 . Then, we have $V = W \oplus W^{\omega}$. Note that W^{ω} is *J*-invariant and that $\omega|_{W^{\omega}}$ is nondegenerate. Induction then finishes the proof.

(2) \implies (3) Define the vector space isomorphism $\phi: \mathbb{R}^{2n} \to V$ by sending $v_i \mapsto u_i$ and $w_i \mapsto J(u_i)$.

(3) \implies (1) It follows from the fact that J_0 is compatible with ω_0 .

Exercise 4.

- 1. The symplectic form in the given basis is represented by the matrix −J. Thus, the condition $A \in \text{Sp}(2n)$ reads $A^t(-J)A = -J$.
- 2. We can mimic the proof for $O(n)$. Let $\mathfrak{so}(2n)$ be the space of skew-symmetric $2n \times 2n$ matrices and define

$$
f\colon M_{2n}\mathbb{R}\to \mathfrak{so}(2n)\colon A\mapsto A^tJA.
$$

Then, $Sp(2n) = f^{-1}(J)$. As for $O(n)$, it is easy to show that J is a regular value of f. Thus, $Sp(2n)$ is a manifold. Moreover, it is clear that composition and inversion preserve $Sp(2n)$.

3. The above costruction of the smooth structure on the symplectic group also gives us for free its Lie algebra, since

$$
\mathfrak{sp}(2n) = T_I \text{Sp}(2n)
$$

= ker $d_I f = \{B \in M_{2n} \mathbb{R} : B^t J + JB = 0\}$

Alternatively, one can use the exponential map to construct curves in the symplectic group with specified initial derivative. Indeed, we can consider a matrix B such that $B^tJ + JB = 0$ and define the curve

$$
\gamma \colon \mathbb{R} \to \text{Sp}(2n) \colon t \mapsto \exp(tB)
$$

To show that the image of γ actually lies in the symplectic group, we compute

$$
\gamma(t)^t J \gamma(t) = \exp(tB)^t J \exp(tB)
$$

= $\exp(tB)^t \exp(-tB^t) J = J,$

where in the second equality we used the Taylor expansion of the exponential map and the condition $B^tJ + JB = 0$ to get

$$
J\exp(tB) = \exp(-tB^t)J.
$$

This shows that

$$
\{B\in M_{2n}\mathbb{R}\colon B^tJ+JB=0\}\subseteq\mathfrak{sp}(2n).
$$

The reverse inclusion is straightforward.