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Solutions
Exercise 1.

1. Riemannian metrics are nondegenerate. This means that the map
¢ TM —T*M :v s g(v,-)

is a bundle isomorphism. This shows that V f is uniquely determined by the re-
quirement g(V f,-) = df.

2. The Hamiltonian vector field X associated to a function H: M — R is defined
analogously, i.e. ix,w = dH. As above, this is well-defined due to nondegeneracy
of w.

3. This is a straightforward computation. The expression is
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4. From the previous point, the flow of Xy solves the system

. _ OH
QZ_ 3171"
— O0H

Pi= "5

for all 1 <7 < n. These are Hamilton’s equations from classical physics.

*For comments, questions, or potential corrections on the exercise sheets, please email
alimoge@mathi.uni-heidelberg.de, or fruscelli@mathi.uni-heidelberg.de
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Exercise 2.

1. The potential energy is (up to constant) V(q) = 3k¢®. From the previous exercise
we get that Xy = p0d, — kq0,.

2. This is a straighforward computation, using of Problem 1.

3. We compute
Xpf =df(Xg) = wo(Xs, Xn)

={/ H}.
This shows that Xy f =0 < {f,H} =0.

4. This is the same computation as above, the only difference being that now Xy f
does not compute the time derivative of f along the trajectories, since f is time-
dependent by assumption. When differentiating with respect to time, the extra
term O; f pops up.

Exercise 3.

1. (=) We only need to show that g, is symmetric. For v,w € V' we have
gs(v,w) = w(v, Jw) = w(Jv, —w) = w(w, Jv) = g;(w,v).
(<) Follow the above argument backwards.
2. (=) We have for all v,w € V
g;(Jv, Jw) = w(Jv, J*w) = w(v, Jw) = gs(v,w).
(<) Follow the above argument backwards.

3. (1) = (2) We argue by induction on dim V. Let u; # 0 be a vector in V' such that
gs(u1,u;) = 1. and consider the subspace W C V spanned by uy, Ju;. Then, we
have V. =W @& W¥. Note that W is J-invariant and that w|y«~ is nondegenerate.
Induction then finishes the proof.

(2) = (3) Define the vector space isomorphism ¢: R** — V by sending v; — u;
and w; — J(u;).
(3) = (1) It follows from the fact that Jy is compatible with wy.

Exercise 4.

1. The symplectic form in the given basis is represented by the matrix —.J. Thus, the
condition A € Sp(2n) reads A'(—J)A = —J.

2. We can mimic the proof for O(n). Let so(2n) be the space of skew-symmetric
2n x 2n matrices and define

f: My,R — s50(2n): A A'JA.

Then, Sp(2n) = f~1(J). As for O(n), it is easy to show that J is a regular value of
f- Thus, Sp(2n) is a manifold. Moreover, it is clear that composition and inversion
preserve Sp(2n).
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3. The above costruction of the smooth structure on the symplectic group also gives
us for free its Lie algebra, since

sp(2n) = TrSp(2n)
=kerd;f = {B € My,R: B'J + JB =0}

Alternatively, one can use the exponential map to construct curves in the symplectic
group with specified initial derivative. Indeed, we can consider a matrix B such
that B'J + JB = 0 and define the curve

v: R — Sp(2n): t — exp(tB)
To show that the image of v actually lies in the symplectic group, we compute

Y(t)' Ty (t) = exp(tB)"J exp(tB)
= exp(tB)’ exp(—tB')J = J,

where in the second equality we used the Taylor expansion of the exponential map
and the condition B'J + JB = 0 to get

Jexp(tB) = exp(—tB*) J.

This shows that
{B € My,R: B'J+ JB = 0} C sp(2n).

The reverse inclusion is straightforward.



