Symp. Geometry-Exercise class 1. $E_{X}Z.$ $M:$ manifold. 1. $\Omega^{k}(H) = \begin{cases} \text{differential} & k-\text{sum} \text{ and } H \end{cases}$
Recall (ex.1): linear form: multilinear map
Tri: tangent bundle In general $\overline{\Pi}$ $T\mathbf{r} = \bigsqcup_{p \in \mathcal{P}} \underbrace{T_{p \in \mathcal{P}}}_{\text{vector}} \mathbf{r}$ A differential form w : at every pt $\in \mathbb{N}$, WIT_{pe}rs : is a linear fami
(glue that together smoothly)
16 Differential form: section of J $M^kN = \begin{cases} object & w se^{t} \\ w|_{T_{p\in V}} & is a linear form \end{cases}$

2. $d: \Omega^{\kappa}(\pi) \to \Omega^{\kappa+1}(\pi)$ $w = \sum_{i,1,2,3,3,4,4,5,6,6} s_{i,1} s_{i,2} + s_{i,3} s_{i,4} + s_{i,4} s_{i,4}$ $d\omega := \sum_{j} \sum_{i, \leq k, i_{k}} \frac{\partial f_{i, \dots, i_{\omega}}}{\partial x_{j}} d\xi_{1} dx_{i} \omega_{1}$ 3. M. mpd, compact, ocientable $S_{1} \subseteq M$, embalded. a flow $\phi^t: M\rightarrow M$ Choose

 $EX2.$ M: $CPCV$ orientable $\lim x = 0$ $IC(n):=\{diff\}$ B := fexact diff. Jours $Z^k = \{closed \ d\mathcal{B} \cdot \mathcal{S} \text{om } \}$ 1. B_{K} , $Z_{K} \leq \Omega^{K}$ O E closed under f closed under scalar malt

 2.6622 $\int B_{\kappa} + Z_{\kappa}$ $w \in B_{\kappa}$ if $\exists \gamma \in \Omega^{\kappa-1}$
s.t $\omega = \frac{dy}{L}$ (exact) $W.T.S (d\omega = 0)$ $\eta = \sum_{i, k, \ldots, i_{N}} \int_{i_{1}, \ldots, i_{N}} dx_{i, n} \ldots x_{i_{N}}$ $w = dy = \sum_{j} \sum_{i, i, j, k, i, p} \frac{\partial g_{i}}{\partial x_{j}} dx_{j} x dx_{i, n, n}$

 $d\omega = d\gamma = \sum_{k} \sum_{j} \frac{\sum_{\vec{\theta}x_{k}\partial x_{j}} d x_{k}\omega_{\vec{\theta}}}{i_{k}d\omega_{\vec{\theta}}}$ K j l, l, c, c go through every possible index. $\frac{2^{2}S}{\frac{\partial x_{3}x_{4}}{\partial x_{5}}\partial x_{6}}$ in dru $=$ 0. $\partial x_k \partial x_j$ and second derivatives cannot 3 $\frac{1}{2}$
 $\frac{1}{2}$
 $\frac{1}{2}$
 $\frac{1}{2}$
 $\frac{1}{2}$
 $\frac{1}{2}$
 $\frac{1}{2}$

 $\frac{1}{2}$

 $\frac{1}{2}$

 s see Arthurs $B^{\prime\prime}$ =) exact K-forms $26/10/24$ email real $H^k := Z_k / B_k$ \Rightarrow vector spaces

Let n:= dian M.

· well-defined:

Need to show: $\int\Big|_{\beta_{\Lambda}} = 0$ $\frac{1}{\sqrt{1-\frac{1}{2}}\sqrt{1-\frac{1}{2}}\left(\frac{1}{2}-\frac{1}{2}\right)}$ in other words let $\bigg($ be exact. $\big| \eta \big| = 0$ pet, or ", without b dry \circ η = dx

 $\int_{M} 2 dx$ $=\int_{\pi} \chi =$ Integral of an exact $bdry$ e^{2} \bigcirc

 $M^{\circ} \rightarrow \mathbb{R}$ is an isamoplism. $PSI:$ PSZ · Surjective. surjective \circ Hⁿ: $Z^{\prime\prime}_{\beta}$ in jective By ex I_3 $dim_R H^* \leq 1$ $dim \Lambda^k V$ So injectivity is $= \begin{pmatrix} x \\ y \end{pmatrix}$

So how do we ι $J : H \longrightarrow K$ surjective $log.2$ d ω s.t $\int \omega + \mathcal{O}.$ ^M orientable Fw top degree $\omega > 0$

 $M^2V \rightarrow d$ im = N

 $H^n = Z^n / B^n$ $dim(H^{\omega})\leq 1$

Have a surjection

 $M^{\sim} \rightarrow \mathbb{R}$

 $\begin{array}{c} \hline \end{array}$

Bincarés Lemma: any closed form on IR" is exact $\bigcup_{i=1}^{n}A_i$ any mfd, \exists $\forall c$ open s.t all closed forms on U are exact PS Lee's intro to smooth mfds $\sqrt{3}$ 3 fms $\left\{ \right.$ closed non exact on M ^D M has non trivial topology

 $\mathbb{R}^2 \setminus \{(0,0)\}$ $\frac{2e\,dy-y\,dx}{x^2+yz}$ $d\lambda =$ Non-exact! exact, whe $J\rightarrow$ have λ $\mathbb{R}^2 \setminus \mathcal{D}$ TUR

 $E_{X.1}$
1. $N^{K}V^{*}:=\begin{cases} \text{linear} & \text{K}-\text{Sums} \\ \end{cases}$

Basis = $\left\{\sum_{i_1<...\right\}_{\text{mass of }S}$ 1-Jouns 301 V * (dudlize)

 $2. K = n$

Basis = $\left\{ dx_{1}x...xdx_{n}\right\}$ $=\frac{1}{\sqrt{det}}$

 N^1V^* : $1-dimens^{|a\omega|}.$ $\begin{array}{ccc} \overline{\rightarrow} & \omega & \omega & \end{array}$ and $\begin{array}{ccc} \overline{\rightarrow} & \omega & \end{array}$ $s.t \text{det}(v_{1},...,v_{n})\neq 0$ Then $\Lambda^n V^* = S_{\rho\alpha n} (det)$ $Ex.4$ D.J 2-Janne is symplectic if \circ ω is closed $(d\omega=0)$ a non-degenerate

S orientable surface S is symplectic

 I_{o} S orient ^F volume fam w_{vol} , $\int_{c}w_{\text{vol}}f$ + C S

^w is non degenerate If were degenerate there would exist some vector

 $X \s.t \omega(X, \bullet) \equiv 0$ O W. 2-Jan on a 2-fold $d\omega$ = \circ 2. Show the symplectic
8 tructure on S orientable (comm.) is unique (in a reassielle) Λ^2 π \ast S \rightarrow I $-$ dimensional any 2-Som is the same
(up to a cst) Π

 $5c$ G Lie group: $\left\{\right\}$ $\int G$ roup G Also a myc $\int y$ where the group laws are smooth lie algebra of ^G $\mathbf{I} := Lie(G)$ $=\begin{cases} \frac{left-iu}{s} & \text{vector} \end{cases}$
 $X is \text{Qyl}-iuv$ $i\int (L_g)_* \times = X$ where $L_g: G \to G : h \mapsto gh$

 $\phi(x)=0$

· surjectivity : Start fran VE Te G. Want to define X left-inv. $\oint (X) = v$ $v = x|_e$ X vector field on G $(X_{v}(g)) := (L_{g})_{*}|_{e}$ v
= d $(L_{g})_{e}$ v

11 (Chain rule) $d(L_g \circ L_g)l_e$ $L_g: G \longrightarrow G \longrightarrow G$ By chain rule, Xv $\phi(X_v) = v$

 $\begin{cases} \chi_{v} = d(\mu_{v})_{e} & v \\ \phi: \underline{q} \longrightarrow T_{e} & \end{cases}$ $X \longmapsto X|_{e}$

 $\phi(X_v) = d(id_e) \circ \theta$
= idev

 $=$ ω

 \Box $O(n) := \int A \epsilon \pi_n \left(A^t A = \overline{\lambda} \right)$ Why is it ^a LG check that everything is smooth). or just observe la) C Ol What is Lie (G) ! 1 C Te G

Lie $(G) = \begin{cases} \frac{1}{2} & \text{vectors of } e \end{cases}$ = { equivalence class }
= { of a path in G } $\Upsilon(t) = P(t), P^{\top}P = e$ differentate $\frac{\dot{P}^T P + P^T \dot{P}}{\dot{L}^2} = 0$

 $\gamma(\circ) = e$ $\frac{100}{5} \sqrt{\frac{1}{5}T} + \frac{1}{5} = 0$ BE Lie (G) $\Rightarrow B^T = -B$ Skew-symmetric

For the other direction need the fact that $exp: \mathbb{F} \longrightarrow G$ coordinates on G see neat $\overline{}$